1,404 research outputs found

    Acute effects of aerobic exercise on feelings of energy in relation to age and gender

    Get PDF
    A crossover experiment was performed to determine whether age and sex, or their interaction, affect the impact of acute aerobic exercise on Vigor-Activity (VA). We also tested whether changes in VA mediated exercise effects on performance on various cognitive tasks. Sixty eight physically inactive volunteers participated in exercise and TV-watching control conditions. They completed the Vigor-Activity subscale of the Profile of Mood States immediately prior to and 2 minutes after the intervention in each condition. They also performed the Trail Making Test 3 minutes after the intervention in each condition. Statistical analyses produced a condition × age × sex interaction characterized by a higher mean VA 10 gain value in the exercise condition (compared to the VA gain value in the TV-watching condition) for young female participants only. In addition, the mediational analyses revealed that changes in VA fully mediated the effects of exercise on TMT-Part A performance

    Titan's interaction with the supersonic solar wind

    Get PDF
    After 9 years in the Saturn system, the Cassini spacecraft finally observed Titan in the supersonic and super-Alfvénic solar wind. These unique observations reveal that Titan?s interaction with the solar wind is in many ways similar to unmagnetized planets Mars and Venus and active comets in spite of the differences in the properties of the solar plasma in the outer solar system. In particular, Cassini detected a collisionless, supercritical bow shock and a well-defined induced magnetosphere filled with mass-loaded interplanetary magnetic field lines, which drape around Titan?s ionosphere. Although the flyby altitude may not allow the detection of an ionopause, Cassini reports enhancements of plasma density compatible with plasma clouds or streamers in the flanks of its induced magnetosphere or due to an expansion of the induced magnetosphere. Because of the upstream conditions, these observations may be also relevant to other bodies in the outer solar system such as Pluto, where kinetic processes are expected to dominate.Fil: Bertucci, Cesar. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Hamilton, D. C.. University of Maryland; Estados UnidosFil: Kurth, W. S.. University of Iowa; Estados UnidosFil: Hospodarsky, G.. University of Iowa; Estados UnidosFil: Mitchell, D.. University Johns Hopkins; Estados UnidosFil: Sergis, N.. Academy of Athens; GreciaFil: Edberg, N. J. T.. Swedish Institute of Space Physics,; SueciaFil: Dougherty, M. K.. Imperial College London; Reino Unid

    Power output, cadence, and torque are similar between the forward standing and traditional sprint cycling positions

    Get PDF
    Purpose: Compare power output, cadence, and torque in the seated, standing, and forward standing cycling sprint positions. Methods: On three separated occasions (ie, one for each position), 11 recreational male road cyclists performed a 14 seconds sprint before and directly after a high-intensity lead-up. Power output, cadence, and torque were measured during each sprint. Results: No significant differences in peak and mean power output were observed between the forward standing (1125.5 ± 48.5 W and 896.0 ± 32.7 W, respectively) and either the seated or standing positions (1042.5 ± 46.8 W and 856.5 ± 29.4 W; 1175.4 ± 44.9 W and 927.5 ± 28.9 W, respectively). Power output was higher in the standing, compared with the seated position. No difference was observed in cadence between positions. At the start of the sprint before the lead-up, peak torque was higher in the standing position vs the forward standing position; and peak torque occurred later in the pedal revolution for both the forward standing and standing positions when compared with the seated position. At the start of the sprint after the lead-up, peak torque occurred later in the forward standing position when compared with both the seated and standing position. At the end of the sprint, no difference in torque was found between the forward standing and standing position either before or after the lead-up. Conclusion: Sprinting in the forward standing sprint position does not impair power output, cadence, and torque when compared with the seated and standing sprint positions

    Ag on Ge(111): 2D X-ray structure analysis of the (Wurzel)3 x (Wurzel)3 superstructure

    Get PDF
    We have studied the Ag/Ge(111)(Wurzel)3 x (Wurzel)3 superstructure by grazing-incidence X-ray diffraction. In our structural analysis we find striking similarities to the geometry of Au on Si(111). The Ag atoms form trimer clusters with an Ag-Ag distance of 2.94+-0.04°A with the centers of the trimers being located at the origins of the (Wurzel)3 x (Wurzel)3 lattice. The Ag layer is incomplete and at least one substrate layer is distorted
    corecore