124 research outputs found

    Quantum Walk Laser

    Full text link
    Synthetic lattices in photonics enable the exploration of light states in new dimensions, transcending phenomena common only to physical space. We propose and demonstrate a Quantum Walk Laser in synthetic frequency space formed by externally modulating a ring-shaped semiconductor laser with ultrafast recovery times. In this device, the initially ballistic quantum walk does not dissipate into low supermode states of the synthetic lattice; instead, thanks to the fast-gain nonlinearity of our quantum cascade laser active material, the state stabilizes in a broad frequency comb, unlocking the full potential of the lattice. This device produces a low-noise, nearly-flat broadband comb (reaching 100 cm−1^{-1} bandwidth), well predicted by our models. The proposed Quantum Walk Laser offers a promising platform to generate broadband, tunable and stable frequency combs.Comment: 9 pages, 4 figure

    The German National Reference Centre for Authentic Food (NRZ-Authent)☆

    Get PDF
    The present report describes the establishment, structure and objectives of the recently established German National Reference Center for Authentic Food (NRZ-Authent). The NRZ-Authent is completely integrated into the Max Rubner-Institut (MRI), the Federal Research Institute of Nutrition and Food in Germany. Various different departments of MRI have a long experience regarding the analysis of the quality of food in general and the testing of food authenticity in particular. Therefore, a close interaction between these food-related departments and the NRZ-Authent is a basic requirement for the successful work of this newly created centre. The addressees of the NRZ-Authent are the official food authorities and laboratories in the German states. In this context, the NRZ-Authent will establish a platform for providing quick access to updated, reliable and consistent technical data, research findings, new techniques and expertise necessary for the correct application of European Union legislation. The MRI has been working on the authenticity of edible oils for a number of years now, and some examples of this successful work are presented

    Active DNA demethylation of developmental cis-regulatory regions predates vertebrate origins

    Get PDF
    DNA methylation [5-methylcytosine (5mC)] is a repressive gene-regulatory mark required for vertebrate embryogenesis. Genomic 5mC is tightly regulated through the action of DNA methyltransferases, which deposit 5mC, and ten-eleven translocation (TET) enzymes, which participate in its active removal through the formation of 5-hydroxymethylcytosine (5hmC). TET enzymes are essential for mammalian gastrulation and activation of vertebrate developmental enhancers; however, to date, a clear picture of 5hmC function, abundance, and genomic distribution in nonvertebrate lineages is lacking. By using base-resolution 5mC and 5hmC quantification during sea urchin and lancelet embryogenesis, we shed light on the roles of nonvertebrate 5hmC and TET enzymes. We find that these invertebrate deuterostomes use TET enzymes for targeted demethylation of regulatory regions associated with developmental genes and show that the complement of identified 5hmC-regulated genes is conserved to vertebrates. This work demonstrates that active 5mC removal from regulatory regions is a common feature of deuterostome embryogenesis suggestive of an unexpected deep conservation of a major gene-regulatory module

    Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis.

    Get PDF
    Multiple sclerosis is a common disease of the central nervous system in which the interplay between inflammatory and neurodegenerative processes typically results in intermittent neurological disturbance followed by progressive accumulation of disability. Epidemiological studies have shown that genetic factors are primarily responsible for the substantially increased frequency of the disease seen in the relatives of affected individuals, and systematic attempts to identify linkage in multiplex families have confirmed that variation within the major histocompatibility complex (MHC) exerts the greatest individual effect on risk. Modestly powered genome-wide association studies (GWAS) have enabled more than 20 additional risk loci to be identified and have shown that multiple variants exerting modest individual effects have a key role in disease susceptibility. Most of the genetic architecture underlying susceptibility to the disease remains to be defined and is anticipated to require the analysis of sample sizes that are beyond the numbers currently available to individual research groups. In a collaborative GWAS involving 9,772 cases of European descent collected by 23 research groups working in 15 different countries, we have replicated almost all of the previously suggested associations and identified at least a further 29 novel susceptibility loci. Within the MHC we have refined the identity of the HLA-DRB1 risk alleles and confirmed that variation in the HLA-A gene underlies the independent protective effect attributable to the class I region. Immunologically relevant genes are significantly overrepresented among those mapping close to the identified loci and particularly implicate T-helper-cell differentiation in the pathogenesis of multiple sclerosis

    Evolution of the ribbon-like organization of the Golgi apparatus in animal cells

    Get PDF
    The ‘‘ribbon,’’ a structural arrangement in which Golgi stacks connect to each other, is considered to be restricted to vertebrate cells. Although ribbon disruption is linked to various human pathologies, its functional role in cellular processes remains unclear. In this study, we investigate the evolutionary origin of the Golgi ribbon. We observe a ribbon-like architecture in the cells of several metazoan taxa suggesting its early emergence in animal evolution predating the appearance of vertebrates. Supported by AlphaFold2 modeling, we propose that the evolution of Golgi reassembly and stacking protein (GRASP) binding by golgin tethers may have driven the joining of Golgi stacks resulting in the ribbon-like configuration. Additionally, we find that Golgi ribbon assembly is a shared developmental feature of deuterostomes, implying a role in embryogenesis. Overall, our study points to the functional significance of the Golgi ribbon beyond vertebrates and underscores the need for further investigations to unravel its elusive biological roles
    • …
    corecore