24 research outputs found

    Survey of A_LT' asymmetries in semi-exclusive electron scattering on He4 and C12

    Full text link
    Single spin azimuthal asymmetries A_LT' were measured at Jefferson Lab using 2.2 and 4.4 GeV longitudinally polarized electrons incident on He4 and C12 targets in the CLAS detector. A_LT' is related to the imaginary part of the longitudinal-transverse interference and in quasifree nucleon knockout it provides an unambiguous signature for final state interactions (FSI). Experimental values of A_LT' were found to be below 5%, typically |A_LT'| < 3% for data with good statistical precision. Optical Model in Eikonal Approximation (OMEA) and Relativistic Multiple-Scattering Glauber Approximation (RMSGA) calculations are shown to be consistent with the measured asymmetries.Comment: 9 pages, 5 figure

    Onset of asymptotic scaling in deuteron photodisintegration

    Full text link
    We investigate the transition from the nucleon-meson to quark-gluon description of the strong interaction using the photon energy dependence of the d(γ,p)nd(\gamma,p)n differential cross section for photon energies above 0.5 GeV and center-of-mass proton angles between 3030^{\circ} and 150150^{\circ}. A possible signature for this transition is the onset of cross section s11s^{-11} scaling with the total energy squared, ss, at some proton transverse momentum, PTP_T. The results show that the scaling has been reached for proton transverse momentum above about 1.1 GeV/c. This may indicate that the quark-gluon regime is reached above this momentum.Comment: Accepted by PRL; 5 pages, 2 figure

    An MBO scheme for minimizing the graph Ohta-Kawasaki functional

    Get PDF
    We study a graph based version of the Ohta-Kawasaki functional, which was originally introduced in a continuum setting to model pattern formation in diblock copolymer melts and has been studied extensively as a paradigmatic example of a variational model for pattern formation. Graph based problems inspired by partial differential equations (PDEs) and varational methods have been the subject of many recent papers in the mathematical literature, because of their applications in areas such as image processing and data classification. This paper extends the area of PDE inspired graph based problems to pattern forming models, while continuing in the tradition of recent papers in the field. We introduce a mass conserving Merriman-Bence-Osher (MBO) scheme for minimizing the graph Ohta-Kawasaki functional with a mass constraint. We present three main results: (1) the Lyapunov functionals associated with this MBO scheme Γ-converge to the Ohta-Kawasaki functional (which includes the standard graph based MBO scheme and total variation as a special case); (2) there is a class of graphs on which the Ohta-Kawasaki MBO scheme corresponds to a standard MBO scheme on a transformed graph and for which generalized comparison principles hold; (3) this MBO scheme allows for the numerical computation of (approximate) minimizers of the graph Ohta-Kawasaki functional with a mass constraint

    Measurement of the Generalized Polarizabilities of the Proton in Virtual Scattering at Q2=0.92 and 1.76 GeV2: I. Low Energy Expansion Analysis

    Full text link
    Virtual Compton Scattering is studied at the Thomas Jefferson National Accelerator Facility at low Center-of-Mass energies, below pion threshold. Following the Low Energy Theorem for the epepγ ep \to ep \gamma process, we obtain values for the two structure functions Pll-Ptt/epsilon and Plt at four-momentum transfer squared Q2=0.92 and 1.76 GeV2.Comment: 4 pages, 2 figures, to be submitted to PRL. Figs 1 and 2, lettering enlarge

    Self-Similarity in Particle-Laden Flows at Constant Volume

    Get PDF
    This paper deals with the evolution of a localized, constant-volume initial condition on an incline into a spreading descending thin-film solution. Clear fluids in this geometry are known to have a front position that moves according to a t1/3 scaling law, based on similarity-solution analysis by Huppert (Nature 300:427–429, 1982). The same dynamics are investigated for particle-laden flow using a recently proposed lubrication model and physical experiments. The analysis includes the role of a precursor in the model. In the lubrication model, the height of the precursor significantly influences the position of the fluid front, independent of particles settling in the direction of flow. By comparing theory with experiments it is shown that the t1/3 scaling law persists, to leading order, for particle-laden flows with particle settling. However, additional physics is needed in the existing lubrication models to quantitatively explain departures from clear-fluid self-similarity due to particle settling

    Computing finite-time singularities in interfacial flows

    No full text
    Finite-time singularities occurring in mathematical models of free-surface flows indicate that important qualitative changes are taking place; for problems in solid and fluid mechanics this includes topological transitions-blow-up and pinch-off. For many problems, the dynamics leading to the formation of such singularities are described by self-similar solutions of the governing nonlinear partial differential equations. We present an analytical and numerical study of these similarity solutions and discuss their stability
    corecore