1,028 research outputs found

    A cross-layer approach for new reliability-performance trade-offs in MLC NAND flash memories

    Get PDF
    In spite of the mature cell structure, the memory controller architecture of Multi-level cell (MLC) NAND Flash memories is evolving fast in an attempt to improve the uncorrected/miscorrected bit error rate (UBER) and to provide a more flexible usage model where the performance-reliability trade-off point can be adjusted at runtime. However, optimization techniques in the memory controller architecture cannot avoid a strict trade-off between UBER and read throughput. In this paper, we show that co-optimizing ECC architecture configuration in the memory controller with program algorithm selection at the technology layer, a more flexible memory sub-system arises, which is capable of unprecedented trade-offs points between performance and reliability

    FLARES: an aging aware algorithm to autonomously adapt the error correction capability in NAND Flash memories

    Get PDF
    With the advent of solid-state storage systems, NAND flash memories are becoming a key storage technology. However, they suffer from serious reliability and endurance issues during the operating lifetime that can be handled by the use of appropriate error correction codes (ECC) in order to reconstruct the information when needed.. Adaptable ECCs may provide the flexibility to avoid worst-case reliability design thus leading to improved performance. However, a way to control such adaptable ECCs strength is required. This paper proposes FLARES, an algorithm able to adapt the ECC correction capability of each page of a flash based on a flash RBER prediction model and on a measurement of the number of errors detected in a given time window. FLARES has been fully implemented within the YAFFS 2 filesystem under the Linux operating system. This allowed us to perform an extensive set of simulations on a set of standard benchmarks that highlighted the benefit of FLARES on the overall storage subsystem performance

    Spikes and diffusion waves in one-dimensional model of chemotaxis

    Full text link
    We consider the one-dimensional initial value problem for the viscous transport equation with nonlocal velocity ut=uxx−(u(K′∗u))xu_t = u_{xx} - \left(u (K^\prime \ast u)\right)_{x} with a given kernel K′∈L1(R)K'\in L^1(\R). We show the existence of global-in-time nonnegative solutions and we study their large time asymptotics. Depending on K′K', we obtain either linear diffusion waves ({\it i.e.}~the fundamental solution of the heat equation) or nonlinear diffusion waves (the fundamental solution of the viscous Burgers equation) in asymptotic expansions of solutions as t→∞t\to\infty. Moreover, for certain aggregation kernels, we show a concentration of solution on an initial time interval, which resemble a phenomenon of the spike creation, typical in chemotaxis models

    A study of blow-ups in the Keller-Segel model of chemotaxis

    Full text link
    We study the Keller-Segel model of chemotaxis and develop a composite particle-grid numerical method with adaptive time stepping which allows us to accurately resolve singular solutions. The numerical findings (in two dimensions) are then compared with analytical predictions regarding formation and interaction of singularities obtained via analysis of the stochastic differential equations associated with the Keller-Segel model

    Transmission of High-Power Electron Beams Through Small Apertures

    Full text link
    Tests were performed to pass a 100 MeV, 430 kWatt c.w. electron beam from the energy-recovery linac at the Jefferson Laboratory's FEL facility through a set of small apertures in a 127 mm long aluminum block. Beam transmission losses of 3 p.p.m. through a 2 mm diameter aperture were maintained during a 7 hour continuous run.Comment: arXiv admin note: text overlap with arXiv:1305.019

    Comparative effectiveness of conservative and pharmacological interventions for chronic non-specific neck pain : Protocol of a systematic review and network meta-analysis

    Get PDF
    BACKGROUND: Neck Pain (NP) has been ranked as one of the top chronic pain conditions in terms of prevalence and years lived with disability in the latest Global Burden of Disease. NP has remarkable socio-economic consequences however, research efforts are limited. Discrepancies among guidelines recommendations on management of chronic neck pain exist. The purpose of this study protocol is to provide the methods for a review with network meta-analysis to identify the most effective interventions for chronic neck pain. METHODS: The following databases will be searched from their inception to February 2019: Cochrane Controlled Trials Register (CENTRAL), PubMed, CINAHL, Scopus, ISI Web of Science and PEDro.Randomized controlled trials (RCTs) on pharmacological and not pharmacological interventions will be included and their risk of bias will be evaluated using the Cochrane Risk of bias tool. Primary outcomes will be reduction in pain and disability. A network meta-analysis will be carried out and pairwise meta-analysis will be conducted using Stata 15 software. Grading of recommendations assessment, development, and evaluation (GRADE) will be applied to assess quality of the body of the evidence. RESULTS: The results of this review will be submitted to a peer-review journal for publication. CONCLUSION: This network meta-analysis will provide a comprehensive review on the most effective treatments for the management of chronic neck pain providing key evidence-based information to patients, clinicians and other relevant stakeholders. Registration: PROSPERO (registration number CRD42019124501)

    Measured Radiation and Background Levels During Transmission of Megawatt Electron Beams Through Millimeter Apertures

    Full text link
    We report measurements of photon and neutron radiation levels observed while transmitting a 0.43 MW electron beam through millimeter-sized apertures and during beam-off, but accelerating gradient RF-on, operation. These measurements were conducted at the Free-Electron Laser (FEL) facility of the Jefferson National Accelerator Laboratory (JLab) using a 100 MeV electron beam from an energy-recovery linear accelerator. The beam was directed successively through 6 mm, 4 mm, and 2 mm diameter apertures of length 127 mm in aluminum at a maximum current of 4.3 mA (430 kW beam power). This study was conducted to characterize radiation levels for experiments that need to operate in this environment, such as the proposed DarkLight Experiment. We find that sustained transmission of a 430 kW continuous-wave (CW) beam through a 2 mm aperture is feasible with manageable beam-related backgrounds. We also find that during beam-off, RF-on operation, multipactoring inside the niobium cavities of the accelerator cryomodules is the primary source of ambient radiation when the machine is tuned for 130 MeV operation.Comment: 9 pages, 11 figures, submitted to Nuclear Instruments and Methods in Physics Research Section

    Beam-Target Double-Spin Asymmetry A(LT) in Charged Pion Production from Deep Inelastic Scattering on a Transversely Polarized He-3 Target at 1.4 \u3c Q(2) \u3c 2.7 GeV2

    Get PDF
    We report the first measurement of the double-spin asymmetry A(LT) for charged pion electroproduction in semi-inclusive deep-inelastic electron scattering on a transversely polarized He-3 target. The kinematics focused on the valence quark region, 0.16 \u3c x \u3c 0.35 with 1.4 \u3c Q(2) \u3c 2.7 GeV2. The corresponding neutron A(LT) asymmetries were extracted from the measured He-3 asymmetries and proton over He-3 cross section ratios using the effective polarization approximation. These new data probe the transverse momentum dependent parton distribution function g(1T)(q) and therefore provide access to quark spin-orbit correlations. Our results indicate a positive azimuthal asymmetry for pi(-) production on He-3 and the neutron, while our pi(+) asymmetries are consistent with zero

    Thin film evolution equations from (evaporating) dewetting liquid layers to epitaxial growth

    Full text link
    In the present contribution we review basic mathematical results for three physical systems involving self-organising solid or liquid films at solid surfaces. The films may undergo a structuring process by dewetting, evaporation/condensation or epitaxial growth, respectively. We highlight similarities and differences of the three systems based on the observation that in certain limits all of them may be described using models of similar form, i.e., time evolution equations for the film thickness profile. Those equations represent gradient dynamics characterized by mobility functions and an underlying energy functional. Two basic steps of mathematical analysis are used to compare the different system. First, we discuss the linear stability of homogeneous steady states, i.e., flat films; and second the systematics of non-trivial steady states, i.e., drop/hole states for dewetting films and quantum dot states in epitaxial growth, respectively. Our aim is to illustrate that the underlying solution structure might be very complex as in the case of epitaxial growth but can be better understood when comparing to the much simpler results for the dewetting liquid film. We furthermore show that the numerical continuation techniques employed can shed some light on this structure in a more convenient way than time-stepping methods. Finally we discuss that the usage of the employed general formulation does not only relate seemingly not related physical systems mathematically, but does as well allow to discuss model extensions in a more unified way

    Existence of solutions for a higher order non-local equation appearing in crack dynamics

    Full text link
    In this paper, we prove the existence of non-negative solutions for a non-local higher order degenerate parabolic equation arising in the modeling of hydraulic fractures. The equation is similar to the well-known thin film equation, but the Laplace operator is replaced by a Dirichlet-to-Neumann operator, corresponding to the square root of the Laplace operator on a bounded domain with Neumann boundary conditions (which can also be defined using the periodic Hilbert transform). In our study, we have to deal with the usual difficulty associated to higher order equations (e.g. lack of maximum principle). However, there are important differences with, for instance, the thin film equation: First, our equation is nonlocal; Also the natural energy estimate is not as good as in the case of the thin film equation, and does not yields, for instance, boundedness and continuity of the solutions (our case is critical in dimension 11 in that respect)
    • …
    corecore