
Politecnico di Torino

Porto Institutional Repository

[Article] FLARES: an aging aware algorithm to autonomously adapt the error
correction capability in NAND Flash memories

Original Citation:
Di Carlo S.; Galfano S.; Indaco M.; Prinetto P.; Bertozzi D.; Olivo P.; Zambelli C. (2014). FLARES:
an aging aware algorithm to autonomously adapt the error correction capability in NAND Flash
memories. In: ACM TRANSACTIONS ON ARCHITECTURE AND CODE OPTIMIZATION, vol. 11
n. 3 - Ar, 26:1-26:25. - ISSN 1544-3566

Availability:
This version is available at : http://porto.polito.it/2547337/ since: June 2014

Publisher:
ACM

Published version:
DOI:10.1145/2631919

Terms of use:
This article is made available under terms and conditions applicable to Open Access Policy Article
("Public - All rights reserved") , as described at http://porto.polito.it/terms_and_conditions.
html

Porto, the institutional repository of the Politecnico di Torino, is provided by the University Library
and the IT-Services. The aim is to enable open access to all the world. Please share with us how
this access benefits you. Your story matters.

(Article begins on next page)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PORTO Publications Open Repository TOrino

https://core.ac.uk/display/20529180?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://porto.polito.it/view/publication/ACM_TRANSACTIONS_ON_ARCHITECTURE_AND_CODE_OPTIMIZATION.html
http://porto.polito.it/2547337/
http://dx.doi.org.ezproxy.biblio.polito.it/10.1145/2631919
http://porto.polito.it/terms_and_conditions.html
http://porto.polito.it/terms_and_conditions.html
http://porto.polito.it/cgi/set_lang?lang=en&referrer=http://porto.polito.it/cgi/share?eprint=2547337

A

FLARES: an aging aware algorithm to autonomously adapt the error
correction capability in NAND Flash memories1

STEFANO DI CARLO, SALVATORE GALFANO, MARCO INDACO, PAOLO PRINETTO,
Politecnico di Torino
DAVIDE BERTOZZI, PIERO OLIVO and CRISTIAN ZAMBELLI, Università di Ferrara

With the advent of solid-state storage systems, NAND flash memories are becoming a key storage technology.
However, they suffer from serious reliability and endurance issues during the operating lifetime that can be
handled by the use of appropriate error correction codes (ECC) in order to reconstruct the information when
needed.. Adaptable ECCs may provide the flexibility to avoid worst-case reliability design thus leading to
improved performance. However, a way to control such adaptable ECCs strength is required. This paper
proposes FLARES, an algorithm able to adapt the ECC correction capability of each page of a flash based
on a flash RBER prediction model and on a measurement of the number of errors detected in a given time
window.

FLARES has been fully implemented within the YAFFS 2 filesystem under the Linux operating system.
This allowed us to perform an extensive set of simulations on a set of standard benchmarks that highlighted
the benefit of FLARES on the overall storage subsystem performances.

Categories and Subject Descriptors: B.3.4 [MEMORY STRUCTURES]: Reliability, Testing, and Fault-
Tolerance—Error-checking; B.8.m [PERFORMANCE AND RELIABILITY]: Miscellaneous

General Terms: Design, Algorithms, Performance, Reliability

Additional Key Words and Phrases: adaptable ECC, BCH codes, error correcting codes, NAND flash memory

1. INTRODUCTION
Driven by the ever increasing demand for high-performance data storage, NAND flash
memory has become one of the fastest growing segments in the global semiconductor
industry. Developers have successfully scaled NAND flash to sub-20-nm technology
and moved from the single-level cell (SLC) technology, in which each cell is able to
store a single bit of information, to the multi-level cell (MLC) technology, able to store
more than one bit per cell (e.g., 2-4 bits) [Cai et al. 2013a].

As NAND flash technology scales down and increases the number of levels per cell,
system management algorithms need to face serious issues to maintain product re-
liability, while continuing to address reduced endurance and demand for increased
performance [Li and Quader 2013; Micheloni et al. 2010; Ielmini 2009; Jae-Duk et al.
2002; Mincheol et al. 2009; Cooke 2007]. Designers use error correction code (ECC)
to guarantee target reliability levels by providing multiple-bit corrections to stored
data [Li and Quader 2013]. If data is deteriorated by aging or read/program disturbs,
the ECC can correct the errors and ensure access to error-free data. Reed-Solomon
(RS) codes [Reed and Solomon 1960] and Bose-Chaudhuri-Hocquenghem (BCH) codes
[Bose and Ray-Chaudhuri 1960] are well-known solutions used to improve NAND flash
reliability. Nevertheless, choosing the ECC correction capability is one of the key de-
sign choices in the development of a NAND flash storage system. It implies to trade-
off between reliability and performance. High correction capability guarantees high
reliability but, as a drawback, it introduces larger ECC encoding/decoding latency, in-
formation overhead, implementation overhead and power overhead. A wrong choice
may either underestimate or overestimate the required redundancy, with the risk of
missing or overkilling the target failure rate and unnecessarily penalizing the memory
performance. Moreover, the reliability of a NAND flash is not constant. It continuously

1This research has been partly supported by the 7th Framework Program of the European Union through
the CLERECO Project, under Grant Agreement 611404 and through the vIrtical project under GA 288574.

A:2 M. Indaco et al.

decreases with time due to the aging effect caused by program and erase operations
on floating gate transistors [Chen 2011]. ECC with programmable correction capabil-
ity are now widely implemented in the same flash controller to adapt the error rate
changes over program and erase cycles. This trend is confirmed by an increased num-
ber of publications proposing hardware implementations of adaptable BCH and RS
codecs for NAND flash that guarantee low hardware overhead compared to worst-case
designs that implement a fixed correction capability [Song et al. 2002; Atieno et al.
2006; Chen et al. 2009; Caramia et al. 2010; Cherukuri 2010; Zambelli et al. 2012;
Di Carlo et al. 2012; Fabiano et al. 2013]. However, for a realistic application of an
adaptable ECC to a NAND flash, a strategy to decide which correction capability to
use at run-time is required. This is still an open question that need to be properly
explored.

This paper tries to answer this question proposing FLARES, an algorithm able to
predict, at run-time, the optimal correction capability for each page of a NAND flash.
FLARES performs predictions based on a combination of data obtained from a NAND
flash bit error rate (BER) estimation model and real measurements of the number
of errors detected in a given time window. The BER estimation model exploited in
FLARES considers the combined effect of program erase cycles and retention time.
This represents an important improvement when compared with previous publications
that in general consider these two contributions in isolation. This prediction model,
combined with the use of real BER data collected at run-time, represents a key in-
strument to implement an effective ECC adaptation strategy in a real flash controller.
FLARES is generic enough to work with several types of ECC able to provide pro-
grammable error correction capability. This includes well established RS, BCH codes
and Low Density Parity Check Codes (LDPC) that are gaining importance for future
NAND flash controllers. FLARES only requires that the ECC enables to program the
target correction capability, and that it is able to provide information about the number
of errors detected and corrected in a codeword. Without loss of generality, this paper
considers its application to the adaptable BCH ECC subsystem presented by Zambelli
et al. [2012]. FLARES has been first evaluated by a MATLABr implementation used to
validate its accuracy in terms of selection of the most suitble ECC correction capabil-
ity. Moreover, the FLARES algorithms have been implemented in a real environment
by instrumenting the YAFFS 2 (Yet Another Flash File System version 2) filesystem
[yaffs.net 2007], one of the most used NAND flash based filesystems. This implemen-
tation has been used to perform an extensive simulation campaign based on a set of
standard benchmarks that allowed us to clearly evaluate the impact of FLARES on
the throughput, power consumption and write amplification of the NAND flash.

The paper is organized as follows. Section 2 introduces the flash memory wear-out
model exploited in Section 3 to define the proposed ECC adaptation heuristic. Sec-
tion 4 introduces the proposed YAFFS 2 implementation and Sections 5 provides re-
sults related to the validation and application of the proposed algorithm to a set of
benchmarks. Finally Section 6 summarizes the main contributions of the work and
concludes the paper.

2. MODELING THE BIT ERROR RATE IN A NAND FLASH MEMORY
The Bit Error Rate (BER) of a page, i.e., the fraction of bits that contain incorrect
data, is the key factor to quantify the NAND flash reliability and hence to select the
ECC correction capability [Mielke et al. 2008]. In this paper we focus on retention
errors and program errors caused by cell aging that are the two dominant types of
errors in MLC NAND flash [Cai et al. 2012]. Two values of BER must be considered
when characterizing a NAND flash. The Raw Bit Error Rate (RBER) is the BER before
applying the error correction. The RBER is technology/environment dependent and is

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

FLARES: an aging aware algorithm to autonomously adapt the error correction capability in NAND Flash memoriesA:3

not constant; it increases with page aging [Brewer and Gill 2008; Mielke et al. 2008;
Cai et al. 2012]. The Uncorrectable Bit Error Rate (UBER) is instead the BER after
the application of the ECC. The UBER is application dependent and sets the target
reliability of the storage system. Manufacturers of NAND flash storage systems often
report UBER values on their data-sheets, in the range of 10−11 to 10−16 [Gray and
van Ingen 2011]. The definition of UBER is a very useful reliability metric for mass-
storage devices because a bit error that damages one file out of many is not equivalent
to a functional failure that destroys the drive. UBER is therefore used to specify the
data-corruption rate that is accepted in the target application [Mielke et al. 2008].

Considering an ECC with correction capability of p errors, UBER is the probabil-
ity of having E > p errors in the page divided by the number n of bits in the page
[Cooke 2007]. Several studies reported that program and retention errors in a page
are in general non-correlated [Yaakobi et al. 2009; Mielke et al. 2008; Micheloni et al.
2008; Micheloni et al. 2010; Yang et al. 2012; Yaakobi et al. 2012; Tanakamaru et al.
2013]. UBER can therefore be computed according to eq. (1) that considers a binomial
distribution of randomly occurred bit errors:

UBER =

P (E>p)
n︷ ︸︸ ︷

1

n

n∑
i=p+1

(
n

i

)
· RBERi · (1 − RBER)

n−i (1)

From eq. (1) it is clear that, in order to properly model the NAND flash reliability,
it is mandatory to model its RBER. RBER modeling for NAND flash is still a matter
of debate since there are multiple approaches to derive a consistent model valid for
different NAND technologies. Nevertheless, from an empirical and statistical charac-
terization of several devices [Mielke et al. 2008; Micheloni et al. 2010] it is possible to
infer a set of equations describing the RBER behavior under different memory operat-
ing points (i.e., writing, erasing, disturbing, or retaining the data).

In a n-bit MLC NAND flash, the threshold voltage (Vth) of each cell can be pro-
grammed to 2n separate states. Each state corresponds to a non-overlapping thresh-
old voltage window. Cells programmed to the same n-bit value have their threshold
voltages falling into the same window, but their exact threshold voltages could be dif-
ferent. It is therefore possible to identify a Vth distribution for each available state.
As an example, in a 2-bit MLC memory, each cell can assume 22 = 4 separate states
and therefore four Vth distributions L0-L3 are used (see Fig. 1). The non-overlap space
between the distributions is called the distribution margin. Four predefined read ref-
erence voltages (VR0-VR3 in Fig.1) are used to discriminate between the four possible
cell states. These read reference voltages are located in the distribution margins of the
threshold voltage distributions.

An erase operation sets all cells of a block at level L0. L0 is the starting point for
each program operation that moves the threshold voltages of the selected cells to one
of the L1-L3 levels. A standard algorithm named incremental step pulse program-
ming (ISPP) is usually exploited to accomplish this operation [Micheloni et al. 2010].
A voltage step of predefined amplitude and duration is applied to the gate of each
programmed cell. Afterwards, a verify operation takes place. It verifies whether the
Vth of each cell falls into the target Vth distribution. All cells that have reached the
desired distribution level are excluded from the following pulses. For the remaining
cells another cycle of ISPP is applied after incrementing the programming voltage.
In fact, the Vth distributions of the L1-L3 levels significantly deviate from an ideal
Gaussian shape. They often cross the distribution read levels (VR0-VR3) and cause bit
errors. Therefore, the RBER of a MLC flash memory strictly depends on the shape of

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4 M. Indaco et al.

Retention errors

R1
V

R2
V

R3
V

R0

L3L1 L2

V [V]

L0

th

B
it

 c
ou

nt

L3L1 L2

V [V]

L0

th

B
it

 c
ou

nt

Write errors

V

Fig. 1. Threshold voltage distribution of a 4-levels MLC NAND Flash. The effects of both retention and
write errors are highlighted as distribution tails crossing the reference voltages (VR0..3) used for discrimi-
nation between levels. The erased distribution L0 is affected only by write errors [Micheloni et al. 2010].

the Vth distributions associated to the different cell states (see Fig. 1). The upper tail
of a distribution is mainly caused by over-programmed cells and disturbed cells (i.e.,
unintended program errors), whereas the lower tail is mainly due to charge losses over
time (i.e., retention errors). These, represent the two main source of errors considered
in this paper [Mielke et al. 2008].

A simple NAND flash RBER model has been proposed by Sun et al. [2011]. The
RBER of different MLC NAND flash parts from a variety of vendors and different
NAND technologies (3x nm, 4x nm, and 5x nm) has been quantified as a function of
the number of program/erase cycles. Empirical data have been then curve-fit by an
exponential growth model. The resulting fitting equation takes the following form:

RBER(PE) = A · eB·PE + C (2)

where PE is the instantaneous program/erase count, and A, B, and C are fitting con-
stants computed with a 95% confidence bound least-square regression. The main bene-
fit of this model lies in its simplicity. However, it has some drawbacks. First, the RBER
may be under/over-estimated for low PE values (i.e., at the beginning of the mem-
ory life-time). Second, the flash RBER is not actually independent from the memory
operating conditions. Eq. (2) does not include any time-related term, introducing an
approximation that prevents its usage in real scenarios.

An alternative to the model of eq. (2) is described in [JEDEC 2011]. A power-law
model is adopted to describe the NAND flash error-rate as a function of the elapsed
time and of the program/erase cycles:

RBER (PE, tret) = RBERwr + Bo (PEn · tret)m (3)
where tret is the page retention time measured in hours, PE is the instantaneous pro-
gram/erase cycles count of the page, m is a coefficient whose numerical value is usually
between 1 and 2, n is a power-law coefficient for program/erase cycles,RBERwr is the
error rate observed at tret = 0, and Bo is a scale factor, which depends on the target
technological process. The coefficients m, n and Bo can be derived through curve-fitting
of experimental data retrieved from the flash technology under investigation. RBERwr

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

FLARES: an aging aware algorithm to autonomously adapt the error correction capability in NAND Flash memoriesA:5

mainly corresponds to errors due to program/erase cycling. The RBER contribution
modeled by eq. (3) increases as retention time increases. Moreover, this increment in-
creases with larger program/erase cycles. This models the fact that fresh devices have
less retention problems, while, in worn-out devices, retention errors increase. Actually,
it has been observed that the RBER does not increase monotonically [Cai et al. 2012].
The retention charge loss shifts back the Vth distributions. Therefore, for a short time
this phenomenon partially mitigates the distribution upper tails effect (Fig. 1) and re-
duces the RBER. However, after a short time, the retention effects start introducing far
more errors than the ones that can be mitigated by the Vth distributions shift and the
RBER starts increasing. Therefore, eq. (3) slightly overestimates the retention RBER
in fresh devices, representing an acceptable worst-case estimation.

The model proposed by eq. (3) has the main drawback that it does not give any pro-
vision on how to estimate RBERwr, which represents the RBER at the beginning of the
retention time. However, RBERwr can be estimated resorting to the model presented
in eq. (2) that takes into account program/erase cycles effects as:

RBERwr(PE) = A · eB·PE + C (4)
The two models can therefore be combined in order to obtain a more precise esti-

mation of the RBER. To summarize, the accurate RBER model exploited in this paper,
that combines the models presented in eqs. (2) and (3) and considers program/erase
cycling impact (RBERwr(PE)) along with retention loss effects (RBERrd(PE, tret)), is
represented by the following equation:

RBER (tret, PE) =

RBERwr(PE)︷ ︸︸ ︷[
A · eB·PE + C

]
+

RBERrd(PE,tret)︷ ︸︸ ︷
Bo (PEn · tret)m

(5)

In the next section we present how the aforementioned analytical model can be ex-
ploited to dynamically select the proper correction capability for a flash page.

3. SELECTING THE CORRECTION CAPABILITY FOR A FLASH PAGE
This section introduces the FLARES algorithm. FLARES estimates the best ECC cor-
rection capability to apply to a NAND flash page in order to meet the target UBER,
while maximizing the NAND flash performance. The basic idea beyond FLARES is
to estimate the RBER of the flash page resorting to the model introduced in eq. (5),
coupled with error rate information collected at run-time. To perform RBER run-time
estimation, FLARES requires to associate the following information items, denoted as
Page run-time PROFile (PPROF), to each page of the NAND flash:

— pcur: the correction capability that has been used to encode the content of the page,
— pnext: the correction capability to use at the next page programming to sustain the

selected UBER,
— pecycles: the number of program/erase cycles applied to the page,
— writestamp: the timestamp of the last program operation, required to compute the

page retention time,
— errc: a counter accumulating the total number of errors detected when reading the

page, and
— failc: a counter counting the number of times the ECC decoding fails.

The PPROF of each NAND flash page must be constantly updated at run-time. Be-
fore presenting FLARES we therefore present the upPage function reported in Alg. 1
that introduces the PPROF update strategy. The operation parameter determines the
performed memory access (i.e., read or programming).

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 M. Indaco et al.

In case of read operation (rows 2-7 - Alg. 1) the ECC decoder provides the fail flag in-
dicating whether the ECC decoding was successful or not and the number deterr of de-
tected and corrected errors. If the decoding was successful (fail = false), errc is updated
adding the detected number of errors (row 3 - Alg. 1). If not, the page failure count failc
is incremented (row 5 - Alg. 1). In this case, the decoder is unable to correctly compute
the actual number of errors in the page. errc is therefore updated adding a number of
errors approximated to the current correction capability (pcur) plus one error (row 6 -
Alg. 1). It is worth to remember here that, in this case, the page must be invalidated.
Its content cannot therefore be used anymore. Instead, in case of programming opera-
tion (rows 9-10 - Alg. 1), the number of program/erase cycles of the page is incremented
(row 9 - Alg. 1) and the page writestamp is generated and saved (row 10 - Alg. 1).

ALGORITHM 1: upPage(operation, deterr, fail, pcur)

1 if operation = read then
2 if fail = false then
3 errc = errc + deterr
4 else
5 failc = failc + 1
6 errc = errc + pcur + 1 {The number of errors in the page is higher than the correction

capability of the code. The page must be invalidated.}
7 end
8 else
9 pecycles = pecycles + 1

10 writestamp = current time

11 end

The PPROF contains enough information to perform RBER estimation for a NAND
flash page according to the model introduced in eq. (5). However, a fixed estimation
model such as the one proposed in eq. (5) is unable to take into account error rate vari-
ations due to specific run-time and environmental conditions (e.g., temperature stress)
that may arise in real applications. As a consequence the reliability of the flash could be
either overestimated or underestimated, with potential risk for the data integrity. To
avoid this, we introduce the FLARES estimation algorithm reported in Alg. 2. FLARES
complements theoretical RBER estimation with run-time RBER estimation obtained
resorting to information provided by the ECC subsystem.

The correction capability pnext that must be applied to the page at the next program-
ming operation is computed by observing windows of WSIZE operations. The contribu-
tion of the retention time to the RBER of the page is first evaluated. The page retention
time is computed as the difference between the current time and the writestamp that
has been saved in the PPROF during the last write operation (Alg. 2, row 1). If the
current retention time is approaching the maximum page retention time, a rewrite
alarm is issued to inform the flash management system that the page must be rewrit-
ten to avoid loss of information due to retention errors (Alg. 2, rows 2-4). It is worth to
mention here that, with the introduction of a variable ECC correction capability, the
maximum retention time that enables to sustain the selected UBER is not constant
but is a function of the selected ECC correction capability. It can be computed by sub-
stituting eq. (5) into eq. (1) and inverting the obtained equation. Since this operation
involves the computation of complex binomials, a static table of maximum retention
times associated to different values of pcur and pecycles (max ret time(pcur,pecycles)) is
precomputed and searched every time the maximum retention time of a page must be
evaluated.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

FLARES: an aging aware algorithm to autonomously adapt the error correction capability in NAND Flash memoriesA:7

ALGORITHM 2: FLARES(PPROF)
Require: const WSIZE, PAGESIZE, SAFERANGE, MAXFAIL, MAXCRITICAL
Require: MAXOVER, MIX, REQ RET TIME
Require: var criticalc, overc, writestamp, current time

1 ret time = current time− PPROF.writestamp
2 if ret time > search(max ret time (pcur,PPROF.pecycles)) then
3 alarm(“page rewrite required”)
4 else
5 meas rber = (PPROF.errc/PAGESIZE)/WSIZE−RBERrd(PPROF.pecycles, ret time)
6 model rber = RBERwr(PPROF.pecycles)
7 avg rber =MIX∗meas rber + (1−MIX) ∗model rber
8 proj rber = avg rber + RBERrd (PPROF.pecycles, REQ RET TIME)
9 (min rber,max rber, p) = search(corr table, proj rber)

10 if PPROF.failc >MAXFAIL then
11 invalidate page
12 PPROF.pnext = max(PPROF.pcur + 1, p) {failure zone}
13 PPROF.failc = 0

14 else if p > PPROF.pcur then
15 PPROF.pnext = p {fast zone}
16 else if p < PPROF.p cur then
17 overc = overc + 1 {overcorrection zone}
18 if overc >MAXOVER then
19 PPROF.pnext = PPROF.pcur − 1
20 overc = 0, criticalc = 0, errc = 0

21 end
22 else if proj rber > max rber−max rber ∗ (1−SAFERANGE) then
23 criticalc = criticalc + 1 {critical zone}
24 if criticalc >MAXCRITICAL then
25 PPROF.pnext = PPROF.pcur + 1
26 overc = 0, criticalc = 0, errc = 0

27 end
28 else
29 PPROF.pnext = PPROF.pcur; {safe zone}
30 end
31 errc = 0
32 end

If the retention time is still within an acceptable interval, the contribution of the
program/erase cycles to the page reliability is evaluated (Alg. 2, rows 5-30). The num-
ber of errors detected by the ECC during the selected window of operations (errc) is
used to obtain an empirical measure (meas rber) of the page RBER (Alg. 2, row 5).
meas rber is computed as the number of detected errors divided by the page size and
averaged over the window size. Since this measurement also includes the contribution
of retention errors, the theoretical value of this contribution (RBERrd from eq. (5)) is
removed. This is motivated by the fact that the error rate contribution due to retention
errors is transitory, i.e., it vanishes once the page is rewritten. Therefore, any control
action (beside the page refresh upon retention check) must not depend on such compo-
nent. Following, model rber, the theoretical contribution of program/erase cycles to the
page RBER (RBERwr from eq. (5)) is computed (Alg. 2, row 6). The two measures are
then combined to obtain an average RBER estimation (avg rber) for the page (Alg. 2,
row 7). The MIX parameter is a internal parameter between 0 and 1, used to tune the
contribution of meas rber and model rber to the final RBER estimation.

According to the JEDEC standard JESD47G.01 [JEDEC 2010], a NAND flash must
retain data for a maximum retention time (REQ RET TIME) of 1 year when cycled at
maximum endurance. If the correction capability is chosen according to avg rber, which
is related to a device with no retention, the minimum retention requirement could not

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 M. Indaco et al.

be met. The correction capability must be instead chosen using the RBER value after
1 year of retention. An estimation of this value, proj rber, is obtained by projecting
avg rber at 1 year retention. This is done (Alg. 2, row 8) by adding to avg rber the RBER
contribution due to the minimum required retention (RBERrd). Given proj rber, eq. (1)
can be reversed to obtain the minimum correction capability p required to sustain
the target UBER. Again, since this operation involves the calculation of large sums
and binomials, a static table (corr table) in which each row is associated to a correction
capability p and a given range of RBER ([min rber, max rber]) is computed and searched
when required (Alg. 2, row 8).

Given the page profile and the computed correction capabilities, five conditions may
arise:

(1) proj rber imposes a correction capability p higher than the current correction pcur

(Alg. 2, rows 14-15). In this situation, called fast zone (FS), pnext is updated to the
computed p to immediately follow the change in the requested correction capability.

(2) proj rber imposes a correction capability p lower than the current correction pcur

(Alg. 2, rows 17-21). In this situation, called overcorrection zone (OC), the current
correction capability is overestimated. However, it is risky to immediately lower
the correction capability of the page since there might be fluctuations of avgrber
when considering different windows. A counter (overc) is used to record the number
of times this situation arises. If this number becomes greater than a predefined
threshold (MAXOVER), we assume that the correction capability can be safely lowered
of one unit (Alg. 2, rows 18-20).

(3) proj rber imposes a correction capability p equal to the current correction pcur, but
its value falls in a neighborhood of maxrber defined by a SAFERANGE constant (Alg. 2
rows 22-23). In this situation, called critical zone (CR), the RBER of the page is ap-
proximating the limit manageable by pcur. A counter (criticalc) counts the number
of occurrences of this situation. If this number becomes higher than a predefined
threshold (MAXCRITICAL) we increase the correction capability of one unit. In this
way we try to anticipate the need for higher correction capability in pages that are
approaching the correction limit of the current code (Alg. 2, rows 24-27).

(4) the number of detected failures in the window is higher than a given threshold
MAXFAIL (Alg. 2, rows 10-13). This situation, called failure zone (FA), is the most
critical condition, since the selected code has been repeatedly unable to handle
the amount of errors detected in the page. The correction capability is therefore
immediately incremented in order to deal with the new situation. The increment
is performed even if the computed p is not actually higher than pcur (Alg. 2, row
12). It is worth to note that this zone is considered for safety reasons, only. If the
proper retention margins are considered, the probability of entering this zone must
be negligible. In fact, a page refresh should be issued before reaching a critical
retention condition of the page.

(5) if none of the previous conditions is true (Alg. 2, row 29), the page is in the safe
zone (SZ). The current correction capability is proper and no action must be taken.

The different thresholds introduced in FLARES provide several degrees of freedom
to precisely tune the ECC adaptation to the characteristic of the flash and to the mem-
ory access profile of the target application. FLARES must be scheduled every time a
page is accessed, but it must be also scheduled periodically in order to monitor those
pages that are rarely accessed but whose retention time might become critical for the
stored information. It is worth to mention here that the use of a variable ECC cor-
rection capability for each page makes the information stored in the PPROF critical
for the correct behavior of the NAND flash. In particular the correction capability pcur

used to encode the page is critical in order to properly retrieve the stored informa-

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

FLARES: an aging aware algorithm to autonomously adapt the error correction capability in NAND Flash memoriesA:9

User Applications

Virtual File System (VFS)

Memory Technology Device
(MTD)

NAND flash memory controller

Li
nu

x
K

er
ne

l

YAFFS 2

yaffs_guts

yaffs_tags_marshalling
FLARES

Software
Hardware

ECC

NAND flash

Fig. 2. FLARES Development environment

tion. The PPROF must therefore be stored in a reliable way but without impacting the
flash endurance and the flash performance. A solution to this problem in a selected
implementation framework will be discussed in the next section of this paper.

4. IMPLEMENTATION
There are several options to implement FLARES in a real environment. Given its low
computational demand it can be implemented in the flash translation layer (FTL), i.e.,
into the firmware of the NAND flash memory controller, or as part of the flash file sys-
tem [Di Carlo et al. 2011]. In this paper, FLARES has been integrated within YAFFS 2
(Yet Another Flash File System version 2) [yaffs.net 2007], one of the most famous
open-source flash memory file systems. This choice is motivated by the availability of
the file system source code that can be analyzed and modified in order to implement the
FLARES algorithms. Moreover, implementing FLARES at the filesystem level, makes
it independent from the specific flash memory subsystem.

4.1. Environment
Figure 2 reports the software and hardware stack in which FLARES has been imple-
mented. The whole environment runs under the Linux operating system. User appli-
cations are decoupled from YAFFS 2 by means of the Linux Virtual File System (VFS)
layer. Therefore, they do not require any modification to work with FLARES.

FLARES is implemented as an additional YAFFS 2 module as will be better ex-
plained later in this section. It therefore communicates with the Linux Memory Tech-
nology Device (MTD) that acts as a device driver interfacing the file system with the
NAND flash controller. In a real environment, the NAND flash controller manages the
flash operations and performs ECC encoding and decoding exploiting fast ECC hard-
ware structures such as the ones presented in [Zambelli et al. 2012; Di Carlo et al.
2012; Fabiano et al. 2013; Atieno et al. 2006; Chen et al. 2009]. To perform controlled
experiments in which errors can be easily emulated and realistic performance pre-

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 M. Indaco et al.

cisely measured, the full hardware layer reported in Figure 2 has been emulated at
the MTD level.

The MTD has been instrumented to emulate the presence of a NAND flash memory
by storing flash pages in RAM. Following Cai et al. [2012] we emulated a real 2-bit per
cell 4-levels MLC NAND memory featuring a 3x nm manufacturing process. The mem-
ory includes 4,096 blocks of 128 pages. The page size is 4KB plus 224B of spare area.
Table Ia reports the flash performance for read and write operations emulated by the
MTD as well as information about power consumption and endurance (i.e., maximum
number of PE cycles) that will be used in the experiments to evaluate the benefit of
FLARES. Fast RAM read/write access, compared to the flash access time, allows us to
emulate the NAND flash behavior in software, without introducing any timing over-
head.

Table I. Parameters used to tune FLARES to the specific experimental setup used in this
paper to show its benefit and performance on the system performance.

Page write time (AVG) @ cycle 1 800us
Page read time 75us

Write operation power consumptions 0.164 W
Read operation power consumptions 40 mW

Maximum considered P/E cycles 10,000
Page Size 4 kB + 224B

(a) NAND Flash simulation parameters. Programming
timings are provided at cycle 1

Constant Value
SAFERANGE 5%
MAXFAIL 3

MAXCRITICAL 5
MAXOVER 15

(b) Algorithm constants.

From the electrical simulations and physical experiments performed in Cai et al.
[2012] we have been able to extrapolate physical flash parameters that have been
used to characterize the NAND flash reliability and, therefore, to properly tune and
configure FLARES for a target experimental setup. Figure 3a reports the measured
flash RBER as a function of the PE cycles, for different retention times ranging from 0
hours to 1 year. Computed data refer to 25◦C equivalent temperature conditions. The
ECC correction capability required to sustain an UBER of 10−11 is instead reported in
Figure 3b. Experimental measurements report that for large program/erase cycles and
retention values, the RBER becomes very high. This makes error correction infeasible
due to unacceptable ECC complexity and latency (the ECC correction capability would
exceed 100 bits). For this reason, following other publications analyzing the endurance
of MLC memories [Yaakobi et al. 2010; Grochowski and Fontana 2012], we considered
a maximum endurance of 10,000 PE cycles per page.

The MTD has been also instrumented to emulate the ECC encoding/decoding activ-
ity performed by NAND flash controller. When emulating the ECC activity, the main
problem to address is to introduce a mechanism to inject errors in the flash pages, and
to precisely emulate the ECC encoding/decoding latency introduced by the NAND flash
controller. FLARES is independent from the selected ECC. In this paper we considered
the BCH ECC architecture proposed by Zambelli et al. [2012]. This architecture has
two main advantages. First it implements a very fast parallel hardware core for BCH
ECC encoding and decoding with programmable correction capability. It is designed for
state-of-the-art MLC memories thus providing a realistic case study. Second, a VHDL
model of the full encoding/decoding system is available. This enables precise RTL sim-
ulations to obtain a precise characterization of the ECC activity in terms of timing and
power consumption.

When instrumenting the MTD to emulate the ECC activity it is worth to remember
that the BCH encoding time is fixed and depends on the parallelism of the encoder
(8-bit in our architecture) and on the ECC codeword size (a full page of the flash in

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

FLARES: an aging aware algorithm to autonomously adapt the error correction capability in NAND Flash memoriesA:11

100 1000 10000 1e+05
Program/Erase Cycles

1e-08

1e-07

1e-06

1e-05

0,0001

0,001

0,01

0,1

R
B

E
R

0 hours
1 day
3 days
3 weeks
3 months
1 year

(a) Measured RBER for a page of the flash at dif-
ferent PE cycles and retention times.

100 1000 10000 1e+05
Program/Erase Cycles

0

5

10

15

20

25

30

35

40

45

50

55

60

65

C
or

re
ct

io
n

C
ap

ab
ili

ty

0 hours
1 day
3 days
3 weeks
3 months
1 year

(b) Required correction capability for a page of the
flash at different PE cycles and retention times.

Fig. 3. Flash memory measuerd RBER and required correction capability

our architecture). Similarly, the ECC decoding time depends on the parallelism of the
decoder (8-bit in our architecture), on the codeword size, on the selected ECC correction
capability, on the actual number of errors in the codeword, and on the error location
within the codeword (errors in the last bits of the codeword require more clock cycles to
be corrected). In order to emulate the impact of the ECC on the system’s performance
it is therefore enough to emulate the ECC latency according to the aforementioned
parameters. The ECC power consumption is also affected by the same parameters.
In our architecture the worst case ECC decoding time ranges between 83.9us for a
correction capability equal to one and 194us for a correction capability equal to 50 that
is the maximum correction capability required in our experimental setup.

We performed an extensive set of VHDL simulations on the architecture proposed
by Zambelli et al. [2012] to characterize the ECC latency and power consumption for
the encoding and decoding operation injecting variable number of errors on a large set
of locations of a flash page. Latency results have been tabulated and instrumented in
the MTD. Every time a memory page is accessed, depending on the target ECC cor-
rection capability and on the errors in the page the ECC encoding/decoding latency is
emulated. Errors can be injected in a page through an injection function implemented
in the MTD. This function receives as a parameter the minimum and the maximum
number of errors that must be injected in a target page. It randomly generates the
number of errors in this range and its location in the page randomly taken from the
list of error locations simulated in the VHDL model. This information is recorded in a
data structure instrumented in the MTD that is used every time the memory page is
accessed to emulate the ECC activity.

Finally, without loosing generality, some of the constants required to tune FLARES
have been fixed and reported in Table Ib.

4.2. FLARES Implementation Details
FLARES requires to write and to read information contained in the page run-time
profile associated to each page of the flash. This is similar to what already happens
with tags in YAFFS 2 that store page information required to build the filesystem.
Hence, as reported in Fig. 2, FLARES has been implemented as an additional module
within YAFFS 2 at the tags marshalling level (contained in the yaffs tagsmarshall.c
YAFFS source file).

One of the most critical activities performed by FLARES is maintaining updated
PPROF information for each page of the flash. Following the policy implemented by
YAFFS 2 to manage its tags, each PPROF must be stored in flash to store the informa-

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 M. Indaco et al.

Data Area Spare Area

data p c
ur

pe
cy

cl
es

w
rit

es
ta

m
p

PP
R

O
F

pa

rit
y

EC
C

 p
ar

ity

YA
FF

S
ta

gs

EC
C

 p
ar

ity

(@
 p

m
ax

)
YA

FF
S

ta
gs

 pnext errc failc

pnext errc failc

Fig. 4. PPROF data organization

tion across system reboots, but it must also be cached in RAM to enable fast access and
to minimize page programming that may impact the flash endurance. The coherence
of the two copies must be always guaranteed.

When considering the PPROF of a page two sets of information items with different
impact on FLARES and different storage requirements can be identified.

pcur, pecycles and writestamp are high-critical information items. They are essential
to decode the page and to keep track of the page wear-out. These items change their
value when a page is programmed and remain constant when the page is read. We
therefore store this portion of the PPROF in flash every time a page is programmed
resorting to the page spare area (together with the ECC parity bits and other YAFFS
2 tags as reported in Fig. 4). This write policy provides high robustness. The PPROF
stored in flash is always updated and consistent with the cached copy in RAM with
no penalties on the flash endurance (no additional page programming operations re-
quired). Nevertheless, it is important to avoid the corruption of this portion of the
PPROF due to errors that may arise in the flash. The sequence of bits composing the
three variables is protected by a dedicated ECC (a BCH code in our implementation)
whose correction capability is fixed and designed for worst case conditions. The parity
bits of this ECC (PPROF parity in Fig. 4) are stored together with the PPROF in the
flash spare area. The introduction of this extra ECC (PPROF ECC) has low impact on
the system’s performance. Even if designed for worst case conditions, it is applied on
a small block of data. It generates a small number of parity bits and it introduces a
negligible encoding time. Moreover, the ECC decoding phase, which is the ECC most
complex operation, is performed only once when the PPROF is cached, again introduc-
ing a minor impact on the overall system’s performance.

The remaining part of the PPROF containing pnext, errc and failc is instead contin-
uously updated at run-time. It is therefore impossible to guarantee the continuous
consistency between cached information and flash content. This portion of the PPROF
is therefore cached and updated in RAM during normal operations and flushed only
when the filesystem is unmounted resorting to a few dedicated reserved pages (Fig-

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

FLARES: an aging aware algorithm to autonomously adapt the error correction capability in NAND Flash memoriesA:13

ure 4 gray pages). This is in line with the YAFFS 2 architecture that exploits reserved
flash pages for storing file system related information. To guarantee the integrity of
the file system, all reserved pages are not controlled by FLARES and always protected
with worst case ECC. Again, since these pages are rarely accessed the use of the worst
case ECC has a reduced impact on the overall system’s performance. Given the in-
consistency between cached information and flash information for this portion of the
PPROF, problems may arise if the cache is not properly flushed when the filesystem
is unmounted (e.g., due to a power loss). Nevertheless, this information is not critical
for the proper behavior of the file system. Even if lost, data in the flash can still be
properly accessed and the lost PPROF information can be re-computed by FLARES at
run-time after the analysis of a few windows of operations.

The PPROF cache policy is important to guarantee high system’s performance. Load-
ing all PPROFs in RAM when the file system is mounted is time-consuming and there-
fore not feasible. While the content of the reserved pages can be cached when the
filesystem is mounted (only few pages are used), the remaining portion of the PPROFs
that is spread in the spare area of each page is cached on on-demand. When a page is
accessed for the first time after mounting the filesystem, two situations may arise:

— Read operation. Both the page content and the spare area where the PPROF is
stored are read from the flash. The PPROF can therefore be cached without intro-
ducing additional operations.

— Program operation. An additional read operation is performed before the write op-
eration to access the page spare area and to read the page PPROF. pecycles is then
used to properly update pnext and therefore to decide the correction capability to
apply.

It is worth to highlight here that, with the increase of the flash size, the cost of
caching the PPROF of all pages may increase. Following traditional caching algorithms
one solution to this problem is to use a small cache and maintain only a subset of
the PPROF using a typical cache replacement algorithm (e.g., LRU, pseudorandom,
etc.). This is a very simple solution that, however, introduces overhead in terms of
performance and wear-out. Another possibility is instead to let group of pages share
the PPROF data so as to reduce the cache size. This solution makes the PPROF caching
easier, nevertheless it reduces the fine tuning capabilities of FLARES since within a
group the worst case correction capability must be always considered.

Together with the cache policy, the way FLARES is scheduled is another important
aspect to optimize both flash performance and reliability. FLARES is scheduled every
time a flash page is either read or programmed. However, this is not enough to guar-
antee the flash integrity. Pages encoded with low correction capability that are rarely
accessed may become critical due to retention errors. In order to properly issue the
page rewrite alarms available in FLARES, rarely accessed pages can be checked in
background during the system’s idle time, thus constantly monitoring the full flash
content.

In the remaining of this section we try to quantify the flash memory overhead intro-
duced by FLARES to store the PPROFs. As previously mentioned we consider a target
UBER of 10−11. Starting from the RBER reported in Figure 3a, according to eq. (1)
and to the model proposed in Section 2 fitted on the experimental data, we require an
ECC with correction capability (i.e., pcur and pnext) ranging from 3 to 50 errors. Both
pcur and pnext can therefore be represented on 6 bits. In our implementation, the ECC
parity bits are computed on a full flash page (i.e., 4KB). According to the BCH theory
(see Micheloni et al. [2008]) a Galois field GF (213) can be used to build the BCH code.
The number of parity bits to store ranges from 3 · 13 = 39bit ∼= 5B when the minimum
correction capability is selected to 50 · 13 = 650bit ∼= 81B when the worst case correction

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 M. Indaco et al.

capability is selected. In the considered technology, pecycles ranges from 0 to 10,000.
It can therefore be represented on 14 bits. The writestamp is instead represented as a
default Linux 32 bits unsigned integer timestamp. The maximum errc value is given
by the product of the maximum number of errors that can be detected at each read
operation (i.e., pmax + 1, in case of failure) and WSIZE. In our implementation, consid-
ering WSIZE = 100, this leads to a maximum value of 5,100 that can be represented on
13 bits to be stored. Finally failc is limited by the MAXFAIL value (3, in this implemen-
tation). Two bits are enough for its representation. Table II summarizes the memory
occupation of the PPROF fields for our specific implementation.

Table II. PPROF memory occu-
pation

Quantity Occupation
pcur 6 bits
pnext 6 bits

pecycles 14 bits
writestamp 32 bits

errc 13 bits
failc 2 bits

According to data reported in Table II, the ECC required to protect the critical por-
tion of the PPROF stored in the page spare area works on a block of k = 52 bits.
According to the BCH theory (see Micheloni et al. [2008]), and considering RBER in-
formation reported in Figure 3a, a Galois field GF (27) can be used to build the ECC
code and a correction capability pPPROF = 5 is required to achieve an UBER of 10−11

in the worst case scenario. This introduces 35 parity bits that must be stored in the
spare area.

According to the previous discussion, in the worst cast each page must store in the
spare area 81B for ECC parity, ∼7B to store pcur, pecycles and writestamp, ∼4B to
store the PPROF parity plus 36B to store YAFFS tags for a total of ∼128B. This leaves
enough space in the spare area (224B) to implement system level management policies
such as wear leveling and bad block management.

Finally, each page must store two counters (failc and errc, of 13 and 2 bits, respec-
tively) plus 6 bits for pnext in the extra reserved pages. With the considered flash tech-
nology each reserved page is able to store 1,560 partial PPROFs leading to a total of
337 pages dedicated to FLARES. This represents the 0.06% of the flash storage capac-
ity, which can be acceptable when considering the gain in terms of performance and
power consumption provided by FLARES.

To properly estimate RBERwr and RBERrd (Alg. 2, rows 5-8), floating point calcula-
tions of complex functions must be performed. However, working at the Linux kernel
level, floating point calculations are not permitted. Fixed point calculations have been
therefore exploited. Splines (piecewise cubic polynomials) have been off-line interpo-
lated on the data presented in Subsection 4.1. These splines are then evaluated at
run-time to approximate complex functions. Using long numeric representations and
proper number of spline pieces (or knots), it is possible to guarantee a representation
error significantly lower than the RBER measurements resolution. Similarly, fixed ta-
bles have been used to avoid complex computations in the choice of the correction ca-
pability according to the RBER and the retention time. In the current implementation
of FLARES, all fixed tables have been hardcoded in the FLARES source code. Never-
theless, this is not the optimal solution. Since these tables are technology dependent,
in a real environment they should be moved within the flash driver thus enabling to
manage different devices with appropriate parameters.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

FLARES: an aging aware algorithm to autonomously adapt the error correction capability in NAND Flash memoriesA:15

Extensive experimental campaigns have been performed to quantify benefits pro-
vided by Flares. Such results are discussed in the next section.

5. EXPERIMENTAL RESULTS
This section reports the results of two sets of experiments performed on FLARES. The
first set of experiments aims at validating the proposed approach demonstrating the
capability of FLARES to correctly adapt the ECC correction capability to the error rate
of the flash. The second set of experiments shows the impact of FLARES on the NAND
flash wear-out and on the system performance. This enables to quantify the trade-off
capability between performance and wear-out.

The FLARES RBER prediction model described in Section 2 has been fitted to the
measured RBER data for the target flash technology reported in Figure 3a. The param-
eters A, B and C of eq. (2) have been estimated using the MATLABr Curve Fitting tool
against data related to 0 hours retention, while parameters from eq. 5 have been fitted
using the MATLABr Surface Fitting tool. Table III reports fitted and calculated data
and some related fitting output. The correlation coefficients from the two fittings (i.e.,
R2

1 = 0.9979 and R2
2 = 0.9876) guarantee a good fitting of the model with only a small

deviation from experimental data.

Table III. RBER model fitting
output

Parameter Value
A 1.059e-005
B 8.634e-006
C -1.009e-005
R2

1 0.9984
Bo 1.691e-011
m 0.6027
n 2.167
R2

2 0.9879

5.1. Validation results
The ability of FLARES to select the ECC error correction capability for a flash page has
been validated by simulating memory operations on a single page of the flash mem-
ory, thus emulating the wear-out of the page and the occurrence of errors. Performing
this simulation campaign running the full FLARES implementation would require a
considerable amount of simulation time due to the need of emulating the wear-out of
the flash across a large amount of operations. Nevertheless, it is worth to consider
that FLARES performances are not important in this validation campaign. Therefore,
the software and the emulated hardware stack reported in Fig. 2 do not require to
be fully implemented and the validation effort can concentrate on the behavior of the
FLARES algorithms (Alg. 1 and Alg. 2). For this reason, the two algorithms have been
implemented in MATLABr and the error occurrence has been emulated by providing
proper values to the deterr and fail parameters of Alg. 1 as better explained later in this
section. Using this simplified MATLABr model, we have been able to perform simula-
tions that emulate the behavior of FLARES on a single page of the flash with different
execution parameters. Results are summarized in Fig.5a, 5b, 5c, and 5d.

Even with a simplified MATLABr implementation, simulating the full life of the
page would be too time consuming. We therefore sampled five representative operating
points corresponding to different wear-out conditions of the page (i.e., PE equal to 10,
102, 104, and 105). Each operating point, corresponding to one of the vertical sections of
Fig. 5a, 5b, 5c, and 5d, sets a fixed 1-year-retention RBER (reported in the figure) and

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 M. Indaco et al.

1*10^0 1*10^2 1*10^3 1*10^4
0

5

10

15

20

25

30

35

40

45

50

RBER=5.0411e-007 RBER=2.155e-006

RBER=3.3892e-005

RBER=0.0006752

PE Cycles

p

wsize = 10
wsize = 100
target correction

(a) FLARES adaptation strategy at works for dif-
ferent values of WSIZE. Simulations reported in
this figure are performed considering MIX = 0.5

1*10^0 1*10^2 1*10^3 1*10^4
0

5

10

15

20

25

30

35

40

45

50

RBER=5.0411e-007 RBER=2.155e-006

RBER=3.3892e-005

RBER=0.0006752

PE Cycles

p

wsize = 10
wsize = 100
target correction

(b) FLARES adaptation strategy at works for dif-
ferent values of WSIZE. Simulations reported in
this figure are performed considering MIX = 0

1*10^0 1*10^2 1*10^3 1*10^4
0

5

10

15

20

25

30

35

40

45

50

RBER=5.0411e-007 RBER=2.155e-006

RBER=3.3892e-005

RBER=0.0006752

PE Cycles

p

wsize = 10
wsize = 100
target correction

(c) FLARES adaptation strategy at works for dif-
ferent values of WSIZE. Simulations reported in
this figure are performed considering MIX = 1

1*10^0 1*10^2 1*10^3 1*10^4
0

5

10

15

20

25

30

35

40

45

50

RBER=5.0411e-007 RBER=2.155e-006

RBER=3.3892e-005

RBER=0.0006752

PE Cycles

p

wsize = 10
wsize = 100
target correction

(d) FLARES adaptation strategy at works for dif-
ferent values of WSIZE. Simulations reported in
this figure are performed considering MIX = 0.5
and 1 year minus 1 hour retention

Fig. 5. FLARES accuracy experimental results

therefore a different target ECC correction capability reported using a dotted line in
the figures.

For each operation point we analyzed a sequence of 1,000 random flash operations
for a total of 5,000 operations. During each operation errors have been introduced in
the page in order to emulate the target RBER of the selected operation point. Further-
more, to model a certain level of variability in the injected error rate, the target RBER
has been corrected with a value obtained sampling a Gaussian distribution centered
in the target RBER with a standard deviation of 5 · 10−7. This value has been chosen
to be large enough to introduce variations in the number of errors, but small enough
to guarantee that the order of magnitude of the target RBER remains the same. We
repeated the analysis considering two different window sizes and three values of the
MIX parameter to highlight the effect of these parameters on FLARES.

Let us consider Fig. 5a. It shows the ECC correction capability predicted by FLARES
with MIX equal to 0.5. Looking at the figure, one can notice that, when the size of the
window is small, the adaptation is very sensible to changes in the estimated RBER,
with the drawback that the correction capability is in general slightly overestimated
especially at the beginning of the flash life-time. This problem can be mitigated by en-
larging the window size. When considering windows of 100 operations, the prediction

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

FLARES: an aging aware algorithm to autonomously adapt the error correction capability in NAND Flash memoriesA:17

becomes more accurate, even if a certain delay in the adaptation can be observed. In
general, the window size parameter allows the designer to trade-off between fast re-
sponse and precision of the adaptation. It is also worth to note that FLARES is able to
adapt even to sharp changes of the flash RBER as the one applied when moving from
one operation point to the next one.

The contribution of the MIX parameter that sets whether the flash RBER estimation
have to rely more on the measured RBER or on the modeled RBER can be appreciated
looking at Fig. 5b and Fig. 5c. When MIX is set to zero (Fig. 5b), FLARES is able
to properly predict the error correction capability of the flash. However, it looses the
ability to react to changes in the error rate due to environmental conditions that have
not been considered in the original model. Differently, when MIX is set to one, only the
measured RBER is considered (Fig. 5c), FLARES becomes too sensible to local changes
in the measured RBER leading to cases in which the correction capability is slightly
underestimated. This clearly demonstrates the importance of combining the modeled
RBER with the measured RBER as performed in FLARES.

Overall, considering our specific experimental setup, MIX = 0.5 is the best option
to obtain good adaptation and precise results. Nevertheless, the different parameters
represent a valuable instrument to let designers carefully tuning FLARES to the spe-
cific technological and operative conditions of the target system. Looking at Fig. 5a the
reader may note that, even when WSIZE = 10 is selected, the target ECC correction
capability can be underestimated for a certain time when moving from one operating
point to the next one. While at a first analysis this may represent a degradation of the
target UBER of the system, one have to consider that, in our simulation, we consider
a sharp change of one order of magnitude of the target RBER when moving from one
operating point to the next one. This represents a very critical condition for FLARES
that, however, is very unlikely to happen in a real environment in which the RBER in
general increases according to a continuous function. To better investigate this situ-
ation we performed an additional simulation in which we considered 1,000 operating
points starting from PE equal to 103, and increasing PE of 104 when moving to an
operation point to the next one. With this more realistic condition, considering both
WSIZE = 10 and WSIZE = 100, FLARES never underestimated the target correcting
capability, thus enabling to meet that target UBER of the application.

Finally, we performed a simulation in which the retention of the memory is stressed.
This result (Fig. 5d) shows that FLARES is capable of adapting the correction capabil-
ity also with very large retention times.

5.2. Wear-out and performance results
The impact of FLARES on the NAND flash wear-out and performance has been eval-
uated by estimating the impact it has on a set of workloads designed to perform in-
tensive I/O operations. FLARES has been deployed within a virtual machine running
the Linux operating system and the YAFFS 2 filesystem. The use of a virtual machine
is required to execute the benchmarks in a controlled environment where only those
processes required for the correct execution of the experiments are enabled.

Several file system benchmarks are available on the Internet (e.g. IOzone [iozone.org
2001], Postmark [Katcher 1997], SPEC benchmarks [spec.org 2001], Filebench [Wilson
2008], etc.). We selected the Filebench benchmark suite. Filebench is an open source
File System benchmark managed by the File systems and Storage Lab group of the
Computer Sciences Department of the Stony Brook University. It provides a large va-
riety of benchmarks whose behavior can be specified using the Workload Model Lan-
guage (WML). They either perform simple file I/O operations, or emulate complex I/O
activities. We selected three Filebench workloads representative of three typical behav-
iors for the flash activity: (1) a read intensive videoserver application that reads a set of

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 M. Indaco et al.

video files from the flash; (2) a balanced read/write webserver emulating a web server
application that opens, reads and closes files while writing a log file, and (3) a write
intensive varmail application emulating a mail server performing create-append-sync,
read-append-sync, read and delete operations on emails.

5.2.1. wear-out. FLARES introduces a mechanism to issue a page refresh command
for those pages that are reaching their maximum retention time (see Alg 2, rows 2-
4). While this approach enables to reduce the impact of retention errors on the flash,
it may introduce additional programming operations that have an impact on the en-
durance of the flash. According to Cai et al. [2012] there are two options to refresh a
flash page: (i) remap (copy/move) the page to a different location, or (ii) re-program it
in its original location by recharging the floating gates.

The first solution is the one traditionally used in commercial controllers to imple-
ment wear leveling algorithms. Unlike DRAM cells, which can be refreshed in-place,
flash cells generally must first be erased before they can be programmed. To avoid
the slow erase operation, current wear leveling algorithms remap the data to another
physical location rather than erasing the data and then programming in-place. Remap
the page to be refreshed is therefore a simple solution already available in commercial
NAND flash controllers. Nevertheless, the copy operation introduces and additional
write operation whose impact on the flash wear-out must be carefully quantified.

The second solution starts from the assumption that cells with retention problems
can be reprogrammed to the value they had before the floating gate lost charge by
re-charging additional electrons onto the floating gate through the ISPP algorithm.
Only those cells that lost their charge are actually affected but the ISPP algorithm,
thus making the impact of this operation on the flash wear-out negligible. One of the
main drawbacks of this approach is that, when a flash cell is reprogrammed, additional
electrons may be injected into the floating gates of its neighbor cells due to coupling
capacitance, thus injecting additional program errors that may increase the overall
RBER of the flash. Nevertheless, according to [Cai et al. 2013b] only a large number of
accumulated in-place recharging will actually cause problems and at that time remap
needs to be triggered. This makes the re-program technique a very valuable solution
whenever it is available in the target NAND flash controller.

Both refresh approaches can work with FLARES. If page re-programming is se-
lected, negligible wear-out effects are introduced by FLARES. However, the contri-
bution of the additional program errors introduced by the refresh operation must be
carefully analyzed at the technological level in order to properly design the ECC re-
quired to sustain the target UBER. In the remaining of this section we will try to
quantify the effect of FLARES on the memory endurance if the page remap option is
selected.

As a measure of the memory wear-out, we use the Write Amplification of an ap-
plication [Hu et al. 2009]. It is defined as the total number of page write operations
performed on the flash (i.e., all write operations including the additional write opera-
tions generated by FLARES) divided by the number of write operations issued by the
application (i.e., the write operations that would be generated without using FLARES).
To evaluate the Write Amplification introduced by FLARES the three selected bench-
marks have been first executed in the target virtual environment for a period of 2
days tracking the number read/write/erase operations issued by the application on the
flash. It is worth to note here that simulating the benchmarks for a period long enough
to generate page refresh commands and to wear-out the memory would be impossi-
ble in a limited time frame. To reduce the simulation time, first of all we performed
the experiments emulating in the Linux MTD a set of small flash memories ranging
from 32MB to 256MB. Small flash memories are easier to wear-out and information

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

FLARES: an aging aware algorithm to autonomously adapt the error correction capability in NAND Flash memoriesA:19

tracked by this execution can be used to extrapolate the behaviour of the application
on the target 2GB memory. The list of operations tracked during the execution of the
benchmarks has been then used as input for the MATLAB model of FLARES under
the assumption of continuous repetitive (steady-state) application behaviour (i.e., the
application continuously performs its operation into an infinite loop) and in the worst-
case where all pages remain always valid. This enabled us to to project the simulation
results over the full flash life-time. Fig. 6a, 6b and 6c show the resulting values of
Write Amplification for the three applications.

If we consider 1-year retention time, for write intensive or balanced applications
(Fig. 6b and 6c), flash pages have a high probability to be rewritten by the application,
they therefore in general do not reach the 1 year maximum retention time that would
trigger the FLARES page refresh. FLARES therefore does not introduce any Write
Amplification2. Instead, when considering read intensive applications (Fig. 6a), the
average page retention time is slightly larger than the 1-year limit thus triggering
some refresh operation. Our experimental data highlighted a low Write Amplification
of 2. At the beginning of the memory life, this phenomenon does not happen since
the retention contribution on RBER is lower and, related to Eq. 1 characteristics, low
correction capability can successfully correct larger RBER ranges.

By analyzing more in detail the obtained results, one can notice that, considering
the webserver and varmail applications, the maximum retention time of 1 year is
definitely over-designed. Cai et al. [2012] demonstrated that designers can use the
maximum retention time coupled with page refresh as an additional design space to
trade-off among ECC complexity, flash performance and flash endurance. Following
what proposed in Cai et al. [2012] we evaluated the Write Amplification introduced
by the page refresh mechanism of FLARES for different retention times lower than 1-
year. Results are reported as well in Fig. 6a, 6b and 6c. For often-writing applications
(webserver and varmail, in our case), the retention limit can be lowered down to 1
month by only introducing a very limited Write Amplification overhead. Similarly, for
seldom-writing applications (videoserver application in our case), an acceptable Write
Amplification value can be obtained lowering the maximum retention time down to 3
months. These results are important when compared to the gain of performance one
can obtain from this reduced retention constraint.

5.2.2. Performances. To conclude the FLARES analysis we evaluated the impact
FLARES has on the NAND flash throughput and power consumption.

Fig. 7 reports the throughput of the three considered benchmarks in terms of num-
ber of flash operations performed per unit of time (read or program operations). Results
are provided for different target retention times and are compared to the performance
obtained executing the application without FLARES, using a fixed ECC with correc-
tion capability p = 50. Every simulation point reported in Fig. 7 corresponds to data
obtained by executing and profiling the benchmark for a period of 6 hours consid-
ering different wear-out points. The simulation has been performed resorting to the
FLARES architecture implemented in Section 4. During the execution of each bench-
mark, similarly to what has been done for the validation experiments, errors have been
randomly injected in the accessed pages in order to emulate the target RBER for the
selected operation point. The injection has been performed resorting to the injection
function instrumented in the Linux MTD. Moreover, to take into account the loss of
performance due to the FLARES page refresh operations, refresh commands have been
randomly generated according to the statistics collected during the wear-out analysis
phase reported in the previous section. In order to automate this massive campaign of

2since Write Amplification is a ratio, no contribution means Write Amplification = 1

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20 M. Indaco et al.

10
0

10
1

10
2

10
3

10
4

0

2

4

6

8

10

12

14

16

PE Cycles

W
rit

e
A

m
pl

ifi
ca

tio
n

Max. retention = 1 month
Max. retention = 3 months
Max. retention = 6 months
Max. retention = 1 year

(a) FLARES Write Amplification for Videoserver appli-
cation

10
0

10
1

10
2

10
3

10
4

0

2

4

6

8

10

12

14

16

PE Cycles

W
rit

e
A

m
pl

ifi
ca

tio
n

Max. retention = 1 month
Max. retention = 3 months
Max. retention = 6 months
Max. retention = 1 year

(b) FLARES Write Amplification for Webserver appli-
cation

10
0

10
1

10
2

10
3

10
4

0

2

4

6

8

10

12

14

16

PE Cycles

W
rit

e
A

m
pl

ifi
ca

tio
n

Max. retention = 1 month
Max. retention = 3 months
Max. retention = 6 months
Max. retention = 1 year

(c) FLARES Write Amplification for Varmail applica-
tion

Fig. 6. FLARES wear-out impact

experiments we resorted to EF3S, a framework to evaluate performance of flash based
storage systems [?]. EF3S, allows to efficiently describe the set of experiments to per-
form and to automate their execution, providing a set of traces of the performed flash
operations with related timing that can be used to evaluate the memory performance.

Exploiting the execution traces collected during the estimation of the throughput of
the benchmarks we also estimated the impact of FLARES on the power consumption
of the flash subsystem as reported in Fig. 8. The estimated power consumption in-
cludes both the contribution of the NAND Flash array and the one of the ECC subsys-
tem estimated after synthesizing its VHDL model in a STM-45nm technology library
[cmp.imag.fr 2013].

From Fig. 7 and Fig. 8 we can elicit the benefits of FLARES on the throughput
and power consumption of all benchmarks when compared to the use of a fixed cor-
rection capability ECC. Considering standard 1 year maximum retention, advantages
are especially achieved in the early stage of the flash life-time when the flash mem-
ory manifests a reduced RBER. As expected, the maximum benefit is observed for the
Videoserver application (Fig. 7a) that performs read intensive activities on the flash.
ECC decoding is the most computational demanding activity compared to ECC en-
coding. Reducing the correction capability of the code reduces the ECC decoding time
with a significant positive impact on the throughput (which improves of about 50%)
and power (which improves of about 10%) of read intensive applications. Neverthe-

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

FLARES: an aging aware algorithm to autonomously adapt the error correction capability in NAND Flash memoriesA:21

1 10 100 1000 10000
PE Cycles

3000

3500

4000

4500

5000

T
hr

ou
gh

pu
t [

O
pe

ra
tio

ns
/s

]

Fixed ECC
Adaptable ECC - 1 year max retention
Adaptable ECC - 6 months max retention
Adaptable ECC - 3 months max retention
Adaptable ECC - 1 month max retention

(a) Videoserver application throughput

1 10 100 1000 10000
PE Cycles

2000

2100

2200

2300

2400

T
hr

ou
gh

pu
t [

O
pe

ra
tio

ns
/s

]

Fixed ECC
Adaptable ECC - 1 year max retention
Adaptable ECC - 6 months max retention
Adaptable ECC - 3 months max retention
Adaptable ECC - 1 month max retention

(b) Webserver application throughput

1 10 100 1000 10000
PE Cycles

1420

1440

1460

1480

1500

T
hr

ou
gh

pu
t [

O
pe

ra
tio

ns
/s

]
Fixed ECC
Adaptable ECC - 1 year max retention
Adaptable ECC - 6 months max retention
Adaptable ECC - 3 months max retention
Adaptable ECC - 1 month max retention

(c) Varmail application throughput

Fig. 7. FLARES throughput experimental results

less, even in the case of write intensive applications such as the varmail benchmark,
the throughput at the beginning of the flash life-time is about 5% higher when using
FLARES compared to the fixed ECC.

Considering the possibility of reducing the maximum retention time limit, the ad-
vantages for all the applications further grow along the whole memory life and espe-
cially at the end of the life. Improvements, both in terms of throughput and power
consumption, at the end of life are comparable to those at the beginning of life. Given
the high performance gain, which comes at very low cost in terms of wear-out, lower-
ing the retention time limit, used together with FLARES, represents an outstanding
memory performances boost technique.

Finally, the ability of tuning the ECC correction capability at run-time has also the
potential of improving the reliability of the NAND flash in case of unforeseen stress
conditions that may rise the flash RBER of a page to unexpected high error rates.
In a fixed ECC design the ECC correction capability is designed to meet the target
UBER of the application. Over-designing the ECC is always avoided since it would
kill the performance of the target application. When introducing FLARES, if the spare
area contains enough space to store additional ECC parity bits, designer become free
to slightly over-designed the ECC correction capability to account for the possibility
of pages that experience very high error rate. This would enable additional reliability
that is however only selected when really required without penalizing the performance
on pages that behave as expected. The only overhead of this approach stems in the ad-

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22 M. Indaco et al.

1 10 100 1000 10000
PE Cycles

0,012

0,0125

0,013

T
ot

al
 P

ow
er

 C
on

su
m

pt
io

n
[W

]

Fixed ECC
Adaptable ECC - 1 year max retention
Adaptable ECC - 6 months max retention
Adaptable ECC - 3 months max retention
Adaptable ECC - 1 month max retention

(a) Videoserver application power consumptions

1 10 100 1000 10000
PE Cycles

0,0149

0,01495

0,015

0,01505

0,0151

0,01515

0,0152

T
ot

al
 P

ow
er

 C
on

su
m

pt
io

n
[W

]

Fixed ECC
Adaptable ECC - 1 year max retention
Adaptable ECC - 6 months max retention
Adaptable ECC - 3 months max retention
Adaptable ECC - 1 month max retention

(b) Webserver application power consumptions

1 10 100 1000 10000
PE Cycles

0,0329

0,03295

0,033

0,03305

T
ot

al
 P

ow
er

 C
on

su
m

pt
io

n
[W

]

Fixed ECC
Adaptable ECC - 1 year max retention
Adaptable ECC - 6 months max retention
Adaptable ECC - 3 months max retention
Adaptable ECC - 1 month max retention

(c) Varmail application power consumptions

Fig. 8. FLARES total power consumptions experimental results

ditional complexity of the ECC hardware, that is however acceptable given the strong
scaling of current technology nodes.

6. CONCLUSIONS
In this paper we presented FLARES, an heuristic able to estimate at run-time the best
ECC correction capability to apply to each page of a flash based storage system.

FLARES has been fully implemented within the YAFFS 2 filesystem under the
Linux operating system. It is therefore ready to be applied in real applicative sce-
narios. When put at work for real-life workloads, experimental results showed strong
improvement in the overall application throughput thus confirming the added value of
using FLARES adaptation techniques. Moreover, simulation results also highlighted
that FLARES predictions are in general accurate, thus enabling to fit the reliability
requirements imposed by real applications.

The capability of FLARES, coupled with an underlying adaptable ECC subsystem
holds promise of improving the performance of the flash by carefully tuning the relia-
bility level to the actual wear-out conditions of the flash.

REFERENCES
Lilian Atieno, Jonathan Allen, Dennis Goeckel, and Russell Tessier. 2006. An adaptive Reed-Solomon errors-

and-erasures decoder. In Proceedings of the 2006 ACM/SIGDA 14th international symposium on Field
programmable gate arrays. ACM, 150–158.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

FLARES: an aging aware algorithm to autonomously adapt the error correction capability in NAND Flash memoriesA:23

Raj C. Bose and Dijen K. Ray-Chaudhuri. 1960. On a class of error correcting binary group codes. Informa-
tion and Control 3, 1 (March 1960), 68–79.

Joe E. Brewer and Manzur Gill. 2008. Nonvolatile Memory Technologies with Emphasis on Flash: A Com-
prehensive Guide to Understanding and Using Flash Memory Devices. IEEE Press.

Yu Cai, Erich F. Haratsch, Onur Mutlu, and Ken Mai. 2012. Error patterns in MLC NAND flash memory:
Measurement, characterization, and analysis. In Design, Automation Test in Europe Conference Exhibi-
tion (DATE), 2012. 521–526. DOI:http://dx.doi.org/10.1109/DATE.2012.6176524

Yu Cai, Erich F. Haratsch, Onur Mutlu, and Ken Mai. 2013a. Threshold Voltage Distribution in MLC NAND
Flash Memory: Characterization, Analysis, and Modeling. In Proceedings of the Conference on Design,
Automation and Test in Europe (DATE ’13). EDA Consortium, San Jose, CA, USA, 1285–1290. http:
//dl.acm.org/citation.cfm?id=2485288.2485597

Yu Cai, O. Mutlu, E.F. Haratsch, and Ken Mai. 2013b. Program interference in MLC NAND flash memory:
Characterization, modeling, and mitigation. In Computer Design (ICCD), 2013 IEEE 31st International
Conference on. 123–130. DOI:http://dx.doi.org/10.1109/ICCD.2013.6657034

Yu Cai, G. Yalcin, O. Mutlu, E.F. Haratsch, A. Cristal, O.S. Unsal, and Ken Mai. 2012.
Flash correct-and-refresh: Retention-aware error management for increased flash memory life-
time. In Computer Design (ICCD), 2012 IEEE 30th International Conference on. 94–101.
DOI:http://dx.doi.org/10.1109/ICCD.2012.6378623

M. Caramia, M. Fabiano, A. Miele, R. Piazza, and P. Prinetto. 2010. Automated synthe-
sis of EDACs for FLASH memories with user-selectable correction capability. In Proceed-
ings of IEEE High Level Design Validation and Test Workshop (HLDVT), 2010. 113 –120.
DOI:http://dx.doi.org/10.1109/HLDVT.2010.5496653

Te-Hsuan Chen, Yu-Ying Hsiao, Yu-Tsao Hsing, and Cheng-Wen Wu. 2009. An Adaptive-Rate Error Correc-
tion Scheme for NAND Flash Memory. In Proceedings of 27th IEEE VLSI Test Symposium, 2009 (VTS
’09). 53 –58. DOI:http://dx.doi.org/10.1109/VTS.2009.24

Yuan Chen. 2011. Flash Memory Reliability NEPP 2008 Task Final Report. (2011). http://trs-new.jpl.nasa.
gov/dspace/bitstream/2014/41262/1/09-9.pdf

Raghunath Cherukuri. 2010. Agile encoder architectures for strength-adaptive long
BCH codes. In GLOBECOM Workshops (GC Wkshps), 2010 IEEE. 1900–1904.
DOI:http://dx.doi.org/10.1109/GLOCOMW.2010.5700273

cmp.imag.fr. 2013. CMP Project. (2013). Retrieved Dec. 2013 from http://cmp.imag.fr/
Jim Cooke. 2007. The Inconvenient Truths of NAND Flash Memory. In Flash Memory Summit. http:

//download.micron.com/pdf/presentations/events/flash mem summit jcooke inconvenient truths nand.
pdf

Stefano Di Carlo, Michele Fabiano, Marco Indaco, and Paolo Prinetto. 2012. ADAGE: An Automated Syn-
thesis tool for Adaptive BCH-based ECC IP-Cores. In IEEE International Test Conference. 15.

Stefano Di Carlo, Michele Fabiano, Paolo Prinetto, and Maurizio Caramia. 2011. Design Issues and Chal-
lenges of File Systems for Flash Memories. inTech, Chapter 1, 3–30.

M. Fabiano, M. Indaco, S. Di Carlo, and P. Prinetto. 2013. Design and optimization of adaptable BCH codecs
for NAND flash memories. Microprocessors and Microsystems 37, 4–5 (2013), 407 – 419.

J. Gray and C. van Ingen. 2011. Empirical Measurements of Disk Failure Rates and Error Rates. (2011).
http://arxiv.org/ftp/cs/papers/0701/0701166.pdf

Edward Grochowski and Robert E. Jr. Fontana. 2012. Future Technology Challenges For NAND Flash And
HDD Products. In Flash Memory Summit. http://www.flashmemorysummit.com/English/Collaterals/
Proceedings/2012/20120821 S102A Grochowski.pdf

Xiao-Yu Hu, Evangelos Eleftheriou, Robert Haas, Ilias Iliadis, and Roman Pletka. 2009. Write amplification
analysis in flash-based solid state drives. In Proceedings of SYSTOR 2009: The Israeli Experimental
Systems Conference (SYSTOR ’09). ACM, New York, NY, USA, Article 10, 9 pages.

D. Ielmini. 2009. Reliability issues and modeling of Flash and post-Flash memory. Microelectronic Engineer-
ing 86, 7–9 (2009), 1870–1875.

iozone.org. 2001. IOzone file system benchmark. (2001). Retrieved 2013 from www.iozone.org
Lee Jae-Duk, Hur Sung-Hoi, and Choi Jung-Dal. 2002. Effects of floating-gate interference on

NAND flash memory cell operation. IEEE Electron Device Letters 23, 5 (May 2002), 264–266.
DOI:http://dx.doi.org/10.1109/55.998871

JEDEC. 2010. Stress-Test-Driven Qualification of Integrated Circuits (JESD47G.01). Technical Report.
JEDEC Solid State Technology Association.

JEDEC. 2011. Failure Mechanisms and Models for Semiconductor Devices (JEP122G). Technical Report.
JEDEC Solid State Technology Association.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24 M. Indaco et al.

Jeffrey Katcher. 1997. PostMark: a new file system benchmark. Network Appliance Tech Report TR3022.
(Oct. 1997).

Yan Li and K.N. Quader. 2013. NAND Flash Memory: Challenges and Opportunities. Computer 46, 8 (Au-
gust 2013), 23–29. DOI:http://dx.doi.org/10.1109/MC.2013.190

Rino Micheloni, Luca Crippa, and Alessia Marelli. 2010. Inside NAND flash memories. Springer Verlag.
Rino Micheloni, Alessia Marelli, and Roberto Ravasio. 2008. Error Correction Codes for Non-Volatile Memo-

ries. Springer Publishing Company, Incorporated.
Neal Mielke, Todd Marquart, Ning Wu, Jeff Kessenich, Hanmant Belgal, Eric Schares, Falgun Trivedi,

Evan Goodness, and Leland R. Nevill. 2008. Bit error rate in NAND Flash memories. In Pro-
ceedings of the IEEE International Reliability Physics Symposium. Phoenix, AZ, USA, 9–19.
DOI:http://dx.doi.org/10.1109/RELPHY.2008.4558857

Park Mincheol, Kim Keonsoo, Park Jong-Ho, and Choi Jeong-Hyuck. 2009. Direct Field Effect of Neighboring
Cell Transistor on Cell-to-Cell Interference of nand Flash Cell Arrays. IEEE Electron Device Letters 30,
2 (feb. 2009), 174–177. DOI:http://dx.doi.org/10.1109/LED.2008.2009555

I. S. Reed and G. Solomon. 1960. Polynomial Codes Over Certain Finite Fields. J. Soc. Indust. Appl. Math.
8, 2 (1960), 300–304.

Moon Kyou Song, Hee-Sun Won, and Min Han Kong. 2002. Architecture for decoding adaptive Reed-Solomon
codes with varying block length. In Consumer Electronics, 2002. ICCE. 2002 Digest of Technical Papers.
International Conference on. 298–299. DOI:http://dx.doi.org/10.1109/ICCE.2002.1014038

spec.org. 2001. SPEC Standard Performance Evaluation Corporation. (2001). Retrieved 2013 from http:
//www.spec.org

Hairong Sun, Peter Grayson, and Bob Wood. 2011. Qualifying Reliability of Solid-State Storage from Multi-
ple Aspects. In 7th IEEE International Workshop on Storage Network Architecture and Parallel I/O.

S. Tanakamaru, Y. Yanagihara, and K. Takeuchi. 2013. Error-Prediction LDPC and Error-Recovery Schemes
for Highly Reliable Solid-State Drives (SSDs). Solid-State Circuits, IEEE Journal of 48, 11 (Nov 2013),
2920–2933. DOI:http://dx.doi.org/10.1109/JSSC.2013.2280078

Andrew Wilson. 2008. The New and Improved FileBench. In File and Storage Technologies (FAST), 2008.
6th USENIX Conference on.

E. Yaakobi, L. Grupp, P.H. Siegel, S. Swanson, and J.K. Wolf. 2012. Characterization and error-correcting
codes for TLC flash memories. In Computing, Networking and Communications (ICNC), 2012 Interna-
tional Conference on. 486–491. DOI:http://dx.doi.org/10.1109/ICCNC.2012.6167470

E. Yaakobi, J. Ma, A. Caulfield, L. Grupp, S. Swanson, P.H. Siegel, and Wolf J.K. 2009. Error Correc-
tion Coding for Flash memories. In Flash Memory Summit. http://cmrr.ucsd.edu/research/documents/
Number31Winter2009 000.pdf

Eitan Yaakobi, Jing Ma, Laura Grupp, Paul H. Siegel, Steven Swanson, and Jack K. Wolf. 2010. Error
characterization and coding schemes for flash memories. In GLOBECOM Workshops (GC Wkshps), 2010
IEEE. 1856–1860. DOI:http://dx.doi.org/10.1109/GLOCOMW.2010.5700263

yaffs.net. 2007. YAFFS: A Flash file system for embedded use. (2007). Retrieved Feb. 2013 from http://www.
yaffs.net/

Chengen Yang, Y. Emre, and C. Chakrabarti. 2012. Product Code Schemes for Error Correction in MLC
NAND Flash Memories. Very Large Scale Integration (VLSI) Systems, IEEE Transactions on 20, 12
(Dec 2012), 2302–2314. DOI:http://dx.doi.org/10.1109/TVLSI.2011.2174389

C. Zambelli, M. Indaco, M. Fabiano, S. Di Carlo, P. Prinetto, P. Olivo, and D. Bertozzi. 2012. A cross-layer ap-
proach for new reliability-performance trade-offs in MLC NAND flash memories. In Design, Automation
Test in Europe Conference Exhibition (DATE), 2012. 881 –886.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

