245 research outputs found

    APFEL: A PDF Evolution Library with QED corrections

    Get PDF
    Quantum electrodynamics and electroweak corrections are important ingredients for many theoretical predictions at the LHC. This paper documents APFEL, a new PDF evolution package that allows for the first time to perform DGLAP evolution up to NNLO in QCD and to LO in QED, in the variable-flavor-number scheme and with either pole or MSbar heavy quark masses. APFEL consistently accounts for the QED corrections to the evolution of quark and gluon PDFs and for the contribution from the photon PDF in the proton. The coupled QCD+QED equations are solved in x-space by means of higher order interpolation, followed by Runge-Kutta solution of the resulting discretized evolution equations. APFEL is based on an innovative and flexible methodology for the sequential solution of the QCD and QED evolution equations and their combination. In addition to PDF evolution, APFEL provides a module that computes Deep-Inelastic Scattering structure functions in the FONLL general-mass variable-flavor-number scheme up to O(αs2\alpha_s^2). All the functionalities of APFEL can be accessed via a Graphical User Interface, supplemented with a variety of plotting tools for PDFs, parton luminosities and structure functions. Written in Fortran 77, APFEL can also be used via the C/C++ and Python interfaces, and is publicly available from the HepForge repository.Comment: 34 pages, 5 figures. Final version, to be published in CPC. Several corrections and improvements. Program available from http://apfel.hepforge.org

    Doped Parton Distributions

    Full text link
    Calculations of high-energy processes involving the production of b-quarks are typically performed in two different ways, the massive four-flavour scheme (4FS) and the massless five-flavour scheme (5FS). For processes where the combination of the 4FS and 5FS results into a matched calculation is technically difficult, it is possible to define a hybrid scheme known as the doped scheme, where above the b-quark threshold the strong coupling runs with nf=5n_f=5, as in the massless calculation, while the DGLAP splitting functions are those of the nf=4n_f=4 scheme. In this contribution we present NNPDF3.0 PDF sets in this doped scheme, compare them with the corresponding 4FS and 5FS sets, and discuss their relevance for LHC phenomenology.Comment: 5 pages, 5 figures, to appear in the proceedings of the 27th Rencontres de Blois on Particle Physics and Cosmology, Blois, May 31 to June 05, 201

    APFELgrid: a high performance tool for parton density determinations

    Full text link
    We present a new software package designed to reduce the computational burden of hadron collider measurements in Parton Distribution Function (PDF) fits. The APFELgrid package converts interpolated weight tables provided by APPLgrid files into a more efficient format for PDF fitting by the combination with PDF and αs\alpha_s evolution factors provided by APFEL. This combination significantly reduces the number of operations required to perform the calculation of hadronic observables in PDF fits and simplifies the structure of the calculation into a readily optimised scalar product. We demonstrate that our technique can lead to a substantial speed improvement when compared to existing methods without any reduction in numerical accuracy.Comment: 13 pages, 2 figures. Submitted to CPC. Code available from https://github.com/nhartland/APFELgri

    On the Impact of Lepton PDFs

    Get PDF
    In this paper we discuss the effect of the complete leading-order QED corrections to the DGLAP equations in the perturbative evolution of parton distribution functions (PDFs). This requires the extension of the purely QCD DGLAP evolution, including a PDF for the photons and, consistently, also for the charged leptons e±e^{\pm}, μ±\mu^\pm and τ±\tau^\pm. We present the implementation of the QED-corrected DGLAP evolution in the presence of photon and lepton PDFs in the APFEL program and, by means of different assumptions for the initial scale PDFs, we produce for the first time PDF sets containing charged lepton distributions. We also present phenomenological studies that aim to assess the impact of the presence of lepton PDFs in the proton for some relevant SM (and BSM) processes at the LHC at 13 TeV and the FCC-hh at 100 TeV. The impact of the photon PDF is also outlined for those processes.Comment: 32 pages, 19 figures, matches published version in JHE

    Angular correlations in the cosmic gamma-ray background from dark matter annihilation around intermediate-mass black holes

    Full text link
    Dark matter (DM) annihilation could in principle contribute to the diffuse cosmic gamma-ray back- ground (CGB). While with standard assumptions for cosmological and particle physics parameters this contribution is expected to be rather small, a number of processes could boost it, including a larger-than-expected DM annihilation cross-section, or the occurance of DM substructures such as DM mini-spikes around intermediate-mass black holes. We show that angular correlations of the CGB provide a tool to disentangle the signal induced by DM annihilation in mini-spikes from a conventional astrophysical component. Treating blazars as a known background, we study the prospects for detecting DM annihilations with the Fermi Gamma-Ray Space Telescope for different choices of DM mass and annihilation channels.Comment: 13 pages, 11 figure

    A determination of the fragmentation functions of pions, kaons, and protons with faithful uncertainties

    Get PDF
    We present NNFF1.0, a new determination of the fragmentation functions (FFs) of charged pions, charged kaons, and protons/antiprotons from an analysis of single-inclusive hadron production data in electron-positron annihilation. This determination, performed at leading, next-to-leading, and next-to-next-to-leading order in perturbative QCD, is based on the NNPDF methodology, a fitting framework designed to provide a statistically sound representation of FF uncertainties and to minimise any procedural bias. We discuss novel aspects of the methodology used in this analysis, namely an optimised parametrisation of FFs and a more efficient χ2\chi^2 minimisation strategy, and validate the FF fitting procedure by means of closure tests. We then present the NNFF1.0 sets, and discuss their fit quality, their perturbative convergence, and their stability upon variations of the kinematic cuts and the fitted dataset. We find that the systematic inclusion of higher-order QCD corrections significantly improves the description of the data, especially in the small-zz region. We compare the NNFF1.0 sets to other recent sets of FFs, finding in general a reasonable agreement, but also important differences. Together with existing sets of unpolarised and polarised parton distribution functions (PDFs), FFs and PDFs are now available from a common fitting framework for the first time.Comment: 50 pages, 22 figures, 5 table

    Modifica delle caratteristiche superficiali dell'ABS mediante rivestimenti isolanti per stampi a iniezione

    Get PDF
    In questa tesi si indagano gli effetti che l'uso di un rivestimento in DLC (diamond-like-carbon) causa sulla morfologia della fase dispersa nell'ABS. Non sono stati riscontrati effetti diversi da quelli causati da stampo convenzionale nei riguardi della deformazione del butadiene in superficie. Si è però riscontrato come i coatings rallentino un fenomeno migratorio.ope

    Time Transfer functions as a way to validate light propagation solutions for space astrometry

    Full text link
    Given the extreme accuracy of modern space astrometry, a precise relativistic modeling of observations is required. Concerning light propagation, the standard procedure is the solution of the null-geodesic equations. However, another approach based on the Time Transfer Functions (TTF) has demonstrated its capability to give access to key quantities such as the time of flight of a light signal between two point-events and the tangent vector to its null-geodesic in a weak gravitational field using an integral-based method. The availability of several models, formulated in different and independent ways, must not be considered like an oversized relativistic toolbox. Quite the contrary, they are needed as validation to put future experimental results on solid ground. The objective of this work is then twofold. First, we build the time of flight and tangent vectors in a closed form within the TTF formalism giving the case of a time dependent metric. Second, we show how to use this new approach to obtain a comparison of the TTF with two existing modelings, namely GREM and RAMOD. In this way, we evidentiate the mutual consistency of the three models, opening the basis for further links between all the approaches, which is mandatory for the interpretation of future space missions data. This will be illustrated through two recognized cases: a static gravitational field and a system of monopoles in uniform motion.Comment: 16 pages, submitted to CQ
    • …
    corecore