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Abstract

Quantum electrodynamics and electroweak corrections are important ingredients for many
theoretical predictions at the LHC. This paper documents APFEL, a new PDF evolution
package that allows for the first time to perform DGLAP evolution up to NNLO in QCD
and to LO in QED, in the variable-flavor-number scheme and with either pole or MS heavy
quark masses. APFEL consistently accounts for the QED corrections to the evolution of
quark and gluon PDFs and for the contribution from the photon PDF in the proton. The
coupled QCD⊗QED equations are solved in x-space by means of higher order interpola-
tion, followed by Runge-Kutta solution of the resulting discretized evolution equations.
APFEL is based on an innovative and flexible methodology for the sequential solution of the
QCD and QED evolution equations and their combination. In addition to PDF evolution,
APFEL provides a module that computes Deep-Inelastic Scattering structure functions in
the FONLL general-mass variable-flavor-number scheme up to O

(
α2
s

)
. All the functional-

ities of APFEL can be accessed via a Graphical User Interface, supplemented with a variety
of plotting tools for PDFs, parton luminosities and structure functions. Written in For-

tran 77, APFEL can also be used via the C/C++ and Python interfaces, and is publicly
available from the HepForge repository.
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Program Summary

Name of the program: APFEL

Version: 2.0.0

Program obtainable from: http://projects.hepforge.org/apfel/

Distribution format : compressed tar file and directly from the HepForge svn repository

E-mail : valerio.bertone@cern.ch, stefano.carrazza@mi.infn.it and juan.rojo@cern.ch

License: GNU Public License

Computers: all

Operating systems: all

Program language: Fortran 77, C/C++ and Python

Memory required to execute: . 2 MB

Other programs called : LHAPDF

External files needed : none

Number of bytes in distributed program, including test data etc.: ∼ 2.4 MB

Keywords: unpolarised parton distribution functions (PDFs), DGLAP evolution equa-
tions, QED corrections, electroweak effects, deep-inelastic scattering (DIS).

Nature of the physical problem: Solution of the unpolarized coupled DGLAP evolution
equations up to NNLO in QCD and to LO in QED in the variable-flavor-number scheme,
both with pole and with MS masses.

Method of solution: Representation of parton distributions and splitting functions on a
grid in x, discretization of DGLAP evolution equations and higher-order interpolation
for general values of x, numerical solution of the resulting discretized evolution equations
using Runge-Kutta methods.

Restrictions on complexity of the problem: Smoothness of the initial conditions for the
PDF evolution.

Typical running time: a few seconds for initialisation, then ∼0.5 s for the generation of
the PDF tables with combined QCD⊗QED evolution (on a Intel(R) Core(TM)2 Duo CPU
E6750 @ 2.66GHz).
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1 Introduction

The requirements of precision physics at the LHC demand parton distribution functions
(PDFs) that are determined using NLO and NNLO QCD theory (see [1–3] for recent
reviews). For a substantial number of processes, the accuracy in both theoretical pre-
dictions and experimental data is such that Quantum Electrodynamics (QED) and pure
electroweak corrections also need to be included. Predictions for hadron-collider pro-
cesses that include QED and electroweak corrections are available for inclusive W and Z
production [4–14], W and Z boson production in association with jets [15–17], diboson
production [18–20], dijet production [21,22] and top quark pair production [23–27] among
others, see also Ref. [28] for a recent review.

In order to derive consistent predictions for hadronic cross-sections, both hard-scattering
matrix elements and PDFs need to be determined with the same accuracy in the QCD
and electroweak couplings. In particular, combining QCD and electroweak calculations at
hadron colliders requires parton distributions that have been determined using the coupled
QCD⊗QED DGLAP evolution equations [29–31]. Until recently, the only PDF set which
included QED corrections was the MRST04QED set, presented almost ten years ago [32].
Recently, the NNPDF2.3QED set [33–35] has also become available: on top of provid-
ing an up-to-date PDF set determined using LO/NLO/NNLO QCD supplemented by LO
QED theory, for the first time the photon PDF, with the corresponding uncertainty, has
been extracted from LHC measurements on electroweak gauge boson production, rather
than being based on model assumptions.1

While much work has been devoted to the study of numerical solutions of the QCD
DGLAP evolution equations and their implementation in public tools [39–46], less effort
has been devoted to the solutions of the DGLAP equations in the presence of QED cor-
rections [32,47,48]. To the best of our knowledge, the only public code which offers such
possibility is partonevolution [48, 49]. However, partonevolution is limited to NLO
QCD corrections and in addition it does not allow to explore different possibilities for the
combination of the QCD and QED evolution equations.

Therefore, the main motivation for this work is to provide for the first time a public
code, accurate and flexible, that can be used to perform PDF evolution up to NNLO
in QCD and LO in QED, both in the fixed-flavour-number (FFN) and in the variable-
flavour-number (VFN) schemes, and using either pole or MS heavy quark masses. Another
motivation was to complete the discussion about the solutions of the QCD⊗QED combined
equations that was only sketched in the original NNPDF2.3QED publication [33], as well
as to provide another independent validation of the FastKernel implementation used in
the determination of those PDF sets.

We call this code APFEL, which stands for A Parton distribution Function Evolution

Library. APFEL is based on an innovative methodology for the solution of the QCD and
QED evolution equations and their combination, leading to a flexibility that can be used
to explore various options that differ by subleading terms. APFEL solves the QCD⊗QED
equations sequentially, that is, first performing QCD evolution and then QED evolution, or
vice-versa. The particular ordering, as well as the related choices to be made when crossing
heavy quark thresholds, can be easily modified by the user. These various possibilities

1The NNPDF2.3 QCD⊗QED sets are available from LHAPDF [36] starting from v5.9.0, as well as internal
PDF sets in Pythia8 [37], see Ref. [38] for details about the latter implementation.
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differ only by subleading terms, that can however lead to a phenomenological impact, so
it is important to quantify these in some detail.

Public codes for the evolution of parton distributions and fragmentation functions can
be divided according to the method they use to solve the DGLAP equations. A first family
consists of x-space methods, which typically use a representation of the PDFs on a grid
in x together with higher-order interpolation techniques for the solution of the intergro-
differential equations [39,41–44]. The widely used HOPPET [39] and QCDNUM [41] programs
belong to this family. The other family is composed of N -space codes, where the DGLAP
equations are first transformed into Mellin space, analytically solved, and then inverted
back to x-space using complex-variable methods [40, 45, 46, 48, 49]. The PEGASUS [45]
program is one of the best-known examples of this strategy. The main drawback of the
N -space methods, however, is the fact that they require the analytical Mellin transform
of the initial PDFs which is possible only for some very specific functional forms. A third
approach is provided by the hybrid method adopted in the FastKernel program, the
internal code used in the NNPDF fits [50, 51], where the DGLAP equations are solved
in Mellin space and then used to determine the x-space evolution operators, which are
convoluted with the x-space PDFs to perform the evolution.

Inspired in part by the techniques used in the HOPPET and QCDNUM programs, APFEL
solves the QCD⊗QED evolution equations in x-space by means of higher-order interpola-
tion, followed by Runge-Kutta solution of the resulting discretized evolution equations. Its
main strength is that, on top of providing fast and efficient state-of-the-art QCD evolution,
it allows to use the variable-flavour-number scheme in the QED evolution of PDFs and to
systematically explore a range of possible options to solve the combined evolution equa-
tions. For these reasons, we believe that APFEL has the potential to become an important
tool for the present and coming generation of PDF analyses including QED corrections.

On top of the PDF evolution routines, APFEL includes also two additional modules that
should be of interest for a variety of users. The first one allows the computation of neutral-
and charged-current Deep-Inelastic Scattering (DIS) structure functions up to O

(
α2
s

)
in

the FONLL general-mass VFN scheme [52] as well as in the zero-mass VFN and FFN
schemes [53]. The second is a user-friendly, flexible Graphical User Interface (GUI), which
provides easy access to all the functionalities of APFEL, and that is supplemented with a
variety of graphical plotting tools for PDFs, parton luminosities and structure functions.

The outline of this paper is the following. In Sect. 2 we review the structure of the
coupled QCD⊗QED evolution equations and discuss their solution and the different op-
tions for the treatment of subleading terms, and we also briefly discuss the implementation
deep-inelastic structure functions. In Sect. 3 we describe the numerical techniques that
are used in APFEL. Then in Sect. 4 we introduce the main functionalities of APFEL and
describe the standard user interface, as well as the Graphical User Interface which provides
a user-friendly interface to all these functionalities and to a variety of plotting tools. In
Sect. 5 we validate APFEL by benchmarking it against other publicly available tools, and
finally in Sect. 6 we conclude and discuss possible future developments.
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2 DGLAP evolution with QED corrections

In this section we present the strategy that APFEL adopts in order to perform the DGLAP
evolution of parton distributions when both QCD and QED effects are taken into ac-
count. First of all, we will present the method used to solve the QED evolution equations,
then how to combine the QCD and QED solutions, and finally the treatment of heavy
quark thresholds in the variable-flavor-number scheme. QCD corrections to the DGLAP
evolution equations [54–56] are available up to NNLO [57–64], and the structure of their
solutions has been discussed in great detail in the literature, see for instance [1,39,45] and
references therein. In this section we limit ourselves to discussing only the new features
that arise in the DGLAP equations when QED effects are taken into account. Finally,
in the last subsection we briefly review the theory of Deep-Inelastic Scattering structure
functions.

2.1 Solving the QED evolution equations

The implementation of the QED corrections to the DGLAP evolution equations leads to
the inclusion of additional terms which contain QED splitting functions [29–31], propor-
tional to the QED coupling α, convoluted with the PDFs. There are several possibilities
to solve the coupled QCD⊗QED DGLAP evolution equations, and, as opposed to previ-
ous works, APFEL adopts a fully factorized approach. In this approach, the QCD and the
QED factorization procedures can be regarded as two independent steps that lead to two
independent factorization scales, on which all PDFs depend, denoted by µ for QCD and
ν for QED, that is, qi ≡ qi(x, µ, ν).

In the particular case where QED corrections are included up to O(α) and the mixed
subleading terms O(ααs) are neglected, the QCD evolution with respect to µ and the
QED evolution with respect to ν will be given by two fully decoupled equations:

µ2 ∂

∂µ2
q(x, µ, ν) = PQCD(x, αs(µ))⊗ q(x, µ, ν) ,

ν2
∂

∂ν2
q(x, µ, ν) = PQED(x, α(ν)) ⊗ q(x, µ, ν) ,

(1)

where PQCD and PQED are respectively the QCD and QED matrices of splitting functions
and q(x, µ, ν) is a vector containing all the parton distribution functions. Let us recall that
in the presence of QED corrections, the photon PDF γ(x, µ, ν) should also be included in
q(x, µ, ν). The symbol ⊗ in Eq. (1) represents the usual convolution operator defined as:

A(x)⊗B(x) ≡

∫ 1

0
dy

∫ 1

0
dz A(y)B(z)δ(x − yz) . (2)

The independent solutions of the differential equations in Eq. (1), irrespective of the
numerical technique used, will give as a result two different evolution operators: ΓQCD,
that evolves the array q in µ while keeping ν constant, and ΓQED, that evolves q in ν
while keeping µ constant. If the QCD evolution takes place between µ0 and µ1 and the
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QED evolution between ν0 and ν1, we will have that:

q(x, µ1, ν) = ΓQCD(x|µ1, µ0)⊗ q(x, µ0, ν) ,

q(x, µ, ν1) = ΓQED(x|ν1, ν0)⊗ q(x, µ, ν0) .

(3)

Once the QCD and QED evolution operators in Eq. (3) have been calculated, one can
combine them to obtain a coupled evolution operator ΓQCD⊗QED that evolves PDFs both
in the QCD and in the QED scales, that is:

q(x, µ1, ν1) = ΓQCD⊗QED(x|µ1, µ0; ν1, ν0)⊗ q(x, µ0, ν0) . (4)

The derivation of the combined evolution operator ΓQCD⊗QED will be discussed in Sect. 2.2.
Let us present first the strategy used in APFEL to solve the QED DGLAP equations in

Eq. (1).2 At leading order, the QED equations for the evolution of the quark and photon
PDFs, dropping for simplicity the dependence on the QCD factorization scale µ, read:

ν2
∂

∂ν2
γ(x, ν) =

α(ν)

4π

[(
∑

i

Nce
2
i

)
P (0)
γγ (x)⊗ γ(x, ν) +

∑

i

e2iP
(0)
γq (x)⊗ (qi + q̄i)(x, ν)

]
,

ν2
∂

∂ν2
qi(x, ν) =

α(ν)

4π

[
Nce

2
iP

(0)
qγ (x)⊗ γ(x, ν) + e2iP

(0)
qq (x)⊗ qi(x, ν)

]
,

ν2
∂

∂ν2
q̄i(x, ν) =

α(ν)

4π

[
Nce

2
iP

(0)
qγ (x)⊗ γ(x, ν) + e2iP

(0)
qq (x)⊗ q̄i(x, ν)

]
,

(5)
where γ(x, ν), qi(x, ν) and q̄i(x, ν) are respectively the PDFs of the photon, the i-th quark
and the i-th antiquark, ei the quark electric charge, Nc = 3 the number of colors and α(ν)
the running fine structure constant. Note that at this order the gluon PDF does not enter
the QED evolution equations. The leading-order QED splitting functions Pij(x) are given
by:

P (0)
qγ (x) = 2

[
x2 + (1− x)2

]
,

P (0)
γq (x) = 2

[
1 + (1− x)2

x

]
,

P (0)
γγ (x) = −

4

3
δ(1 − x),

P (0)
qq (x) = 2

1 + x2

(1 − x)+
+ 3δ(1 − x) .

(6)

The index i in Eq. (5) runs over the active quark flavors at a given scale ν.
It should be noted that, in the presence of QED effects, the usual momentum sum rule

is modified to take into account the contribution coming from the photon PDF. Therefore,

2In what concerns the QCD evolution equations, APFEL implements a similar strategy as the one used
in [51], namely rotating the PDF vector q from the flavor basis into the evolution basis, the one which
maximally diagonalizes the QCD splitting function matrix PQCD. Then the QCD DGLAP equations in
this evolution basis are solved using the numerical techniques that will be presented in Sect. 3.
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provided that the input PDFs respect the momentum sum rule, the QED evolution should
satisfy the equality:

∫ 1

0
dx x

{
∑

i

(qi + q̄i)(x, µ, ν) + g(x, µ, ν) + γ(x, µ, ν)

}
= 1 , (7)

for any value of the scales µ and ν. An important test of the numerical implementation
of DGLAP evolution in the presence of QED effects is to check that Eq. (7) indeed holds
at all scales.

As in the case of QCD, an important practical issue that needs to be addressed when
solving the QED DGLAP evolution equations is the choice of the PDF basis. The use of
the flavor basis q = {γ, u, ū, d, d̄, ...} requires the solution of a system of thirteen coupled
equations which in turns leads to a cumbersome numerical implementation. This problem
can be overcome by choosing a suitable PDF basis, the evolution basis, that maximally
diagonalizes the QED splitting function matrix. Note that this optimized basis will be
different from that used in QCD, due to the presence of the electric charges ei in Eq. (5)
that are different between up- and down-type quarks.3

In APFEL we adopt a PDF basis for the QED evolution which was originally suggested
in Ref. [48], defined by the following singlet and non-singlet PDF combinations:

Singlet : qSG =




γ
Σ ≡ u+ + c+ + t+ + d+ + s+ + b+

D∆Σ ≡ u+ + c+ + t+ − d+ − s+ − b+


 ,

Non-Singlet : qNS
i =





Duc ≡ u+ − c+,
Dds ≡ d+ − s+,
Dsb ≡ s+ − b+,
Dct ≡ c+ − t+,

u−,
d−,
s−,
c−,
b−,
t−





, i = 1, . . . , 10 ,

(8)

where we have defined q± ≡ q±q. Similarly to the QCD notation, the singlet distributions
are those that couple to the photon PDF γ(x, ν), while the non-singlet distributions evolve
multiplicatively and do not couple to the photon.

With the choice of basis of Eq. (8), the original thirteen-by-thirteen system of coupled
equations in the flavor basis reduce to a three-by-three system of coupled equations and
ten additional decoupled differential equations. Expressing the QED DGLAP equations
given in Eq. (5) in terms of this evolution basis, we find that the singlet PDFs evolve as

3 This difference between up- and down-type quarks, in the presence of QED effects, is also responsible
for the dynamical generation of isospin symmetry breaking between proton and neutron PDFs.
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follows:

ν2
∂

∂ν2




γ
Σ

D∆Σ


 =

α(ν)

4π



e2ΣP

(0)
γγ η+P

(0)
γq η−P

(0)
γq

θ−P
(0)
qγ η+P

(0)
qq η−P

(0)
qq

θ+P
(0)
qγ η−P

(0)
qq η+P

(0)
qq


⊗




γ
Σ

D∆Σ


 , (9)

where, using the fact that e2u = e2c = e2t and e2d = e2s = e2b , we have defined:

e2Σ ≡ Nc(nf,upe
2
u + nf,dne

2
d) ,

η± ≡
1

2

(
e2u ± e2d

)
,

θ± ≡ 2Ncnf

[(
nf,up − nf,dn

nf

)
η± + η∓

]
,

(10)

where nf,up and nf,dn are the number of up- and down-type active quark flavors, respec-
tively, and nf = nf,up + nf,dn. The non-singlet PDFs, instead, obey the multiplicative
evolution equation:

ν2
∂

∂ν2
qNS
i (x, ν) = e2iP

(0)
qq (x)⊗ qNS

i (x, ν) , (11)

where the electric charge e2i = e2u for the up-type distributions qNS
i = Duc,Dct, u

−, c−, t−

while e2i = e2d for the down-type distributions qNS
i = Dds,Dsb, d

−, s−, b−. Let us mention
that strictly speaking Eq. (11) is valid only if all the quark flavors are present in the
evolution, that is for nf = 6. For 3 ≤ nf ≤ 5, some non-singlet PDF (Duc, Dsb and Dct)
will not evolve independently, since they can be written as a linear combination of singlet
PDFs. For instance, below the charm threshold, Duc = u+ = (Σ +D∆Σ)/2.

The solution of Eqs. (9) and (11) determines the QED evolution operators that evolve
the singlet and non-singlet PDFs from the initial scale ν0 to some final scale ν according
to the equations:

qSG(x, ν) = ΓSG
QED(x|ν, ν0)⊗ qSG(x, ν0) ,

qNS
i (x, ν) = ΓNS

QED,i(x|ν, ν0)⊗ qNS
i (x, ν0) ,

(12)

where the singlet evolution operator ΓSG
QED is a three-by-three matrix while the non-singlet

evolution operators ΓNS
QED,i form an scalar array. In Sect. 3 we will show how to compute

numerically these evolution operators solving the corresponding integro-differential equa-
tions by means of higher-order interpolation techniques.

2.2 Combining the QCD and QED evolution operators

Once the QED evolution operators in Eq. (12) have been computed by means of some
suitable numerical method, one needs to combine them with the corresponding QCD
evolution operators. In order to perform the combination, we can write Eq. (12) in a matrix
form introducing in the PDF basis also the gluon PDF g(x, ν, µ). Taking into account the
fact that at leading order in QED the gluon PDF does not evolve, reintroducing the

9



dependence on the QCD factorization scales µ and dropping for simplicity the dependence
on x, we can write Eq. (12) as follows:




g(µ, ν)
qSG(µ, ν)
qNS
1 (µ, ν)

...
qNS
10 (µ, ν)




︸ ︷︷ ︸
q(µ,ν)

=




1 0 0 0 0
0 ΓSG

QED 0 . . . 0

0 0 ΓNS
QED,1 . . . 0

...
...

...
. . .

...
0 0 0 . . . ΓNS

QED,10




︸ ︷︷ ︸
ΓQED(ν,ν0)

⊗




g(µ, ν0)
qSG(µ, ν0)
qNS
1 (µ, ν0)

...
qNS
10 (µ, ν0)




︸ ︷︷ ︸
q(µ,ν0)

. (13)

In the above expression, we have denoted by q(µ, ν) the fourteen-dimensional vector that
contains all PDF combinations in the QED evolution basis of Eq. (8) plus the gluon PDF.
Of course, a similar expression as that of Eq. (12) will hold for the solution of the QCD
DGLAP evolution equations:

q̃(µ, ν) = Γ̃QCD(µ, µ0)⊗ q̃(µ0, ν) , (14)

where in this case the vector q̃ is given in the QCD evolution basis, which is a different
linear combination of the quark, anti-quark, gluon and photon PDFs as compared to the
corresponding QED evolution basis. The two basis are related by an invertible fourteen-
by-fourteen rotation matrix T that transforms the vector q̃ into the vector q:

q = T · q̃ =⇒ q̃ = T−1 · q . (15)

Using Eq. (15) and the condition T ·T−1 = 1, the solution of the QED evolution equations
Eq. (13) can be rotated as follows:

q̃(µ, ν) =
[
T−1 · ΓQED(ν, ν0) ·T

]
︸ ︷︷ ︸

Γ̃QED(ν,ν0)

⊗ q̃(µ, ν0) . (16)

where Γ̃QED(ν, ν0) is now the QED evolution operator expressed in the QCD evolution
basis. Eqs. (14) and (16) determine the QCD and the QED evolution, respectively, of
PDFs in the QCD evolution basis and can therefore be consistently used to construct a
combined QCD⊗QED evolution operator. In the following, we drop all the tildes since
it is understood that PDFs and evolution operators are always expressed in the QCD
evolution basis.

Now, when combining QCD and QED evolution operators we are faced with an inherent
ambiguity. Given that QCD and QED evolutions take place by means of the matrix
evolution operators ΓQCD and ΓQED that do not commute,

[ΓQCD,ΓQED] 6= 0 , (17)

this implies that performing first the QCD evolution followed by the QED evolution leads
to a different result if the opposite order is assumed. We can then define the two possible
cases:

ΓQCED(µ, µ0; ν, ν0) ≡ ΓQED(ν, ν0)⊗ ΓQCD(µ, µ0) , (18)

ΓQECD(µ, µ0; ν, ν0) ≡ ΓQCD(µ, µ0)⊗ ΓQED(ν, ν0) , (19)
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and the condition in Eq. (17) implies that:

ΓQCED(µ, µ0; ν, ν0)⊗ q(µ0, ν0) 6= ΓQECD(µ, µ0; ν, ν0)⊗ q(µ0, ν0) . (20)

However, using the analytical solution of the QCD and QED DGLAP equations in Mellin
space and the Baker-Campbell-Hausdorff formula, it is possible to show that:

[ΓQCD,ΓQED] = O(ααs) , (21)

and therefore Eqs. (18) and (19) correspond to the same evolution operator up to pertur-
bative subleading O(ααs) terms, which are beyond the accuracy of the present implemen-
tation of QED effects.

In addition, a careful analysis of the expansions of the two combined evolution opera-
tors in Eqs. (18) and (19) shows that they have a similar perturbative structure:

ΓQCED =

∞∑

n=0

(αA+ αsB)n + ααsC +O(α2) , (22)

ΓQECD =

∞∑

n=0

(αA+ αsB)n − ααsC +O(α2) . (23)

These expansions suggest a third possibility for the combined evolution operator given by
the average of the ΓQCED and ΓQECD operators:

ΓQavD ≡
ΓQCED + ΓQECD

2
, (24)

so that the subleading terms O(ααs) cancel and the perturbative remainder is O(α2).
As will be shown in Sect. 5, the QavD solution, Eq. (24), turns out to be the closest

to the solution of the QCD⊗QED equations adopted in the MRST04QED fit [32] and in
partonevolution [48,49], all of them different by O(α2) terms only. In Sect. 5 we will also
study the numerical impact of the different options for computing the QCD⊗QED evolu-
tion operators, Eqs. (18,19,24). There we will show that the subleading terms in solutions
QCED and QECD are numerically sizable because they are enhanced by large unresummed
scale logarithms, but that this is not the case for the QavD solution.

Let us mention also that, to the best of our knowledge, this is the first time that
the sequential combination of the QCD and QED evolution has been investigated in the
literature. Programs such as partonevolution instead diagonalize the sum of the QCD
and the QED splitting matrices in a special basis, rather than solving the QCD and the
QED DGLAP evolution equations separately and then combining the results, as APFEL

does.

2.3 QCD⊗QED combined evolution in the VFN scheme

The above discussion assumed that no heavy quark threshold is crossed during the DGLAP
evolution, that is, it is valid only when PDF evolution is performed in the FFN scheme.
Of course, for any realistic application we need to perform PDF evolution in the VFN
scheme, where the number of active quark flavors nf increases by one each time a heavy
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quark mass threshold is crossed. From the practical point of view, solving the evolution
equations in the VFN scheme implies solving different evolution equations below and above
each heavy quark threshold and matching them at the threshold itself, as we discuss now.

In order to show how APFEL performs the QCD⊗QED combined evolution in the
VFN scheme, we use as an example the crossing of the charm mass threshold mc (i.e.
µ0, ν0 < mc < µ, ν) where the number of active flavors contributing to the evolution
increases from three to four. In this case, the QCD and the QED evolution of the PDF
vector q can be schematically expressed as follows:

q(µ, ν0) = ΓQCD,(4)(µ,mc)⊗ ΓQCD,(3)(mc, µ0)⊗ q(µ0, ν0) ,

q(µ0, ν) = ΓQED,(4)(ν,mc)⊗ ΓQED,(3)(mc, ν0)⊗ q(µ0, ν0) ,

(25)

where the upper index in the evolution operators Γ denotes the number of active flavors.
Now, there are different possibilities. Choosing for instance to perform first the QCD
followed by the QED evolution, we have two options:

q(µ, ν) =

{[
ΓQED,(4)(ν,mc)⊗ ΓQCD,(4)(µ,mc)

]
⊗

[
ΓQED,(3)(mc, ν0)⊗ ΓQCD,(3)(mc, µ0)

] }
⊗ q(µ0, ν0)

≡ ΓQCEDP(µ, µ0; ν, ν0)⊗ q(µ0, ν0) ,

q(µ, ν) =

{[
ΓQED,(4)(ν,mc)⊗ ΓQED,(3)(mc, ν0)

]
⊗

[
ΓQCD,(4)(µ,mc)⊗ ΓQCD,(3)(mc, µ0)

]}
⊗ q(µ0, ν0)

≡ ΓQCEDS(µ, µ0; ν, ν0)⊗ q(µ0, ν0) .

(26)

In the first of these equations, QCD and QED evolutions are done in parallel (thus the
notation ΓQCEDP), that is, QCD and QED evolutions with three active flavors are per-
formed before crossing the charm threshold and then again with four active flavors after
the crossing. In the second equation in Eq. (26), instead, QCD and QED evolutions are
done in series (ΓQCEDS), that is, the full QCD evolution, including the crossing of the
charm threshold, is followed by the full QED one.

The same discussion applies when QED evolution is followed by QCD evolution, defin-
ing the evolution operators ΓQECDP and ΓQECDS, and to the averaged solution, defining
the evolution operators ΓQavDP and ΓQavDS. Again, due to Eq. (21), all the six possibilities
are formally equivalent up to subleading terms. They have all been implemented in APFEL

and in Sect. 5 we will study their numerical differences. Let us finally mention that since
in practice there is no need to keep the QCD and the QED factorization scales different,
in APFEL they are always taken to be equal, i.e. ν0 = µ0 = Q0 and ν = µ = Q.
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2.4 Deep-Inelastic Scattering structure functions

In this section we briefly review the theory of the Deep-Inelastic Scattering (DIS) structure
functions, and describe the options that are available in APFEL. DIS cross-sections for
neutral- and charged-current DIS on unpolarized nucleons are given by the contribution
of three independent structure functions, that are usually taken to be F2, FL and xF3, so
that one can generically write:

d2σ

dxdy
= K(Q2)

[
Y+F2(x,Q

2)− y2FL(x,Q
2)∓ Y−xF3(x,Q

2)
]
, (27)

with Y± ≡ 1 ± (1 − y)2, where x, Q2 and y are the usual DIS variables and K(Q2) is a
kinematic factor different for neutral- and charged-current scattering.

Typically, experimental measurements are given in terms in of dimensionless reduced
cross sections [65], defined as:

σ̃(x,Q2, y) ≡





1

KY+

d2σ

dxdy
= F2(x,Q

2)−
y2

Y+
FL(x,Q

2)∓
Y−

Y+
xF3(x,Q

2) for NC

1

K

d2σ

dxdy
= Y+F2(x,Q

2)− y2FL(x,Q
2)∓ Y−xF3(x,Q

2) for CC

.

(28)
In APFEL we have implemented the reduced cross sections on top of the individual structure
functions. In addition, APFEL provides separated predictions for light and heavy structure
functions:

Fi = F l
i + F c

i + F b
i + F t

i with i = 2, 3, L , (29)

where F l
i is the contribution due to the light flavours (up, down and strange), F c

i to the
charm, F b

i to the bottom and F t
i to the top. Note that at O

(
α2
s

)
for neutral-current and

at O (αs) for charged-current, there can be ambiguities in the definition of heavy quark
structure functions, in APFEL we follow the conventions of Refs. [52] and [66] respectively.

Structure functions are related to parton distributions by means of the convolution:

Fi(x,Q
2) ≡

∑

j=g,q,q

Cj
i (x,Q

2)⊗ qj(x,Q
2) , (30)

where the coefficient functions Cj
i can be computed in perturbation theory and are usu-

ally given as power series in the strong coupling αs. The computation of the coefficient
functions Cj

i can be performed in different mass schemes and there are basically two
possibilities where the heavy quarks are treated either as massive, usually referred to
as fixed-flavour-number (FFN) scheme, or as massless partons, usually called zero-mass
variable-flavour-number (ZM-VFN) scheme. The resulting calculations are more accurate
in two different and complementary regimes: the FFN scheme is more accurate for values
of Q2 comparable to the mass of the heavy quark involved in the calculation, while the ZM-
VFN scheme is instead more accurate for values of Q2 much larger than the heavy-quark
mass.

There exist different prescriptions to combine the FFN and the ZM-VFN schemes in
such a way to obtain accurate predictions over the complete Q2 range, which are referred to
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as General-Mass Variable-Flavour-Number (GM-VFN) schemes [52,67–69]. APFEL imple-
ments the FONLL scheme [52], but it also provides the possibility to compute predictions
in the FFN and in the ZM-VFN scheme separately.

3 Numerical techniques

In this section we will present the numerical techniques that APFEL uses to solve the
DGLAP evolution equations. Both QCD and QED DGLAP evolution equations have the
same formal structure, and thus the same numerical techniques presented in this section
apply to both of them. In order to show the general strategy, here we will see how APFEL

solves the QCD evolution equations but keeping in mind that the same procedure applies
to the QED ones as well.

The QCD DGLAP evolution equations can be written as:

µ2∂qi(x, µ)

∂µ2
=

∫ 1

x

dy

y
Pij

(
x

y
, αs(µ)

)
qj(y, µ) , (31)

where Pij (x, αs(µ)) are the usual QCD splitting functions up to some perturbative order
in αs. If we make the following definitions:

t ≡ ln(µ2) ,
q̃(x, t) ≡ xq(x, µ) ,

P̃ij(x, t) ≡ xPij(x, αs(µ)) ,

(32)

Eq. (31) becomes:
∂q̃i(x, t)

∂t
=

∫ 1

x

dy

y
P̃ij

(
x

y
, t

)
q̃j(y, t) . (33)

In order to numerically solve the above equation, we choose to express PDFs in terms of
an interpolation basis over an x grid with Nx + 1 points. This way we can write:

q̃(y, t) =

Nx∑

α=0

w(k)
α (y)q̃(xα, t) , (34)

where {w
(k)
α (y)} is a set of interpolation functions of degree k. In APFEL we have chosen

to use the Lagrange interpolation method and therefore the interpolation functions read:

w(k)
α (x) =

k∑

j=0,j≤α

θ(x− xα−j)θ(xα−j+1 − x)

k∏

δ=0,δ 6=j

[
x− xα−j+δ

xα − xα−j+δ

]
. (35)

Notice that Eq. (35) implies that:

w(k)
α (x) 6= 0 for xα−k < x < xα+1 . (36)

Now we can rewrite Eq. (33) as follows:

∂q̃i(x, t)

∂t
=
∑

α

[∫ 1

x

dy

y
P̃ij

(
x

y
, t

)
w(k)
α (y)

]
q̃j(xα, t) . (37)
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In the particular case in which the x variable in Eq. (37) coincides with one of the x-grid
nodes, say xβ, the evolution equations take the following discretized form:

∂q̃i(xβ, t)

∂t
=
∑

α

[∫ 1

xβ

dy

y
P̃ij

(
xβ
y
, t

)
w(k)
α (y)

]

︸ ︷︷ ︸
Πij,βα(t)

q̃j(xα, t) . (38)

From Eq. (36) follows the condition:

Πij,βα(t) 6= 0 for β ≤ α . (39)

In addition, the computation Πij,βα in Eq. (38) can be simplified to:

Πij,βα(t) =

∫ b

a

dy

y
P̃ij

(
xβ
y
, t

)
w(k)
α (y) , (40)

where the integration bounds are given by:

a ≡ max(xβ , xα−k) and b ≡ min(1, xα+1) . (41)

Alternatively, by means of a change of variable, the integral in Eq. (40) can be rearranged
as follows:

Πij,βα(t) =

∫ d

c

dy

y
P̃ij(y, t)wα

(
xβ
y

)
, (42)

where the new integration bounds are defined as:

c ≡ max(xβ, xβ/xα+1) and d ≡ min(1, xβ/xα−k) . (43)

One central aspect of the numerical methods used in APFEL is the use of an interpolation
over a logarithmically distributed x grid. In this case, the interpolation coefficients in
Eq. (35) can be expressed as

w(k)
α (x) =

k∑

j=0,j≤α

θ(x− xα−j)θ(xα−j+1 − x)

k∏

δ=0,δ 6=j

[
ln(x)− ln(xα−j+δ)

ln(xα)− ln(xα−j+δ)

]
. (44)

If in addition the x grid is logarithmically distributed, i.e. such that ln(xβ) − ln(xα) =
(β − α)∆, where the step ∆ is a constant, one has that the interpolating functions read:

w(k)
α (x) =

k∑

j=0, j≤α

θ(x− xα−j)θ(xα−j+1 − x)

k∏

δ=0,δ 6=j

[
1

∆
ln

(
x

xα

)
1

j − δ
+ 1

]
, (45)

so that the dependence on x of the interpolating function w
(k)
α (x) is through the function

ln(x/xα) only. Therefore, it can be shown that in Eq. (42) w
(k)
α (xβ/y) depends only on

the combination [(β − α)∆− ln y] and thus Πij,βα depends only on the difference (β−α).
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One can use this information, together with the condition in Eq. (39), to represent
Πij,βα(t) as a matrix, where β is the row index and α the column index. Such a represen-
tation of Πij,βα(t) reads:

Πij,βα(t) =




a0 a1 a2 · · · aNx

0 a0 a1 · · · aNx−1

0 0 a0 · · · aNx−2
...

...
...

. . .
...

0 0 0 · · · a0




. (46)

Therefore, the knowledge of the first row of the matrix Πij,βα(t) is enough to determine all
the other entries. This feature, which is based on the particular choice of the interpolation
procedure, leads to a more efficient computation of the evolution operators since it reduces
by a factor Nx the number of integrals to be computed.

After the presentation of the interpolation method, we turn to discuss the actual
computation of the evolution operators. Any splitting function, be it QED or QCD at any
given perturbative order, has the following general structure:

P̃ij(x, t) = xPR
ij (x, t) +

xPS
ij (x, t)

(1− x)+
+ PL

ij (t)xδ(1 − x) , (47)

where PR
ij (x, t) is the regular term, PS

ij (x, t) is the coefficient of the plus-distribution term,

and PL
ij (t) is the coefficient of the local term proportional to the delta functions. It is useful

to recall here that the general definition of plus-distribution in the presence of arbitrary
integration bounds is given by:

∫ d

c

dy
f(y)

(1− y)+
=

∫ d

c

dy
f(y)− f(1)θ(d− 1)

1− y
+ f(1) ln(1− c)θ(d− 1) . (48)

Moreover, each of the functions Pij appearing in Eq. (47) has the usual perturbative
expansion that at NkLO reads:

P J
ij(x, t) =

k∑

n=0

an+1
s (t)P

J,(n)
ij (x), with J = R,S,L , (49)

where we have defined as ≡ αs/4π.

Taking the above considerations into account and using the fact that w
(k)
α (xβ) = δβα,

we can write the evolution operators in terms of the various parts of the splitting functions
as follows:

Πij,βα(t) =

k∑

n=0

an+1
s (t)

{∫ d

c

dy

[
P

R,(n)
ij (y)wα

(
xβ
y

)
+

P
S,(n)
ij (y)

1− y

(
wα

(
xβ
y

)
− δβαθ(d− 1)

)]

+
[
P

S,(n)
ij (1) ln(1− c)θ(d− 1) + P

L,(n)
ij

]
δβα

}
≡

k∑

n=0

an+1
s (t)Π

(n)
ij,βα ,

(50)
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where the coefficients Π
(n)
ij,βα are independent of the energy scale t, and need to be evaluated

a single time once the x interpolation grid and the evolution parameters have been defined.
Now we will show that Eq. (50) respects the symmetry conditions of Eq. (46). We can

distinguish two cases: 1) d < 1 and 2) d = 1. In the case 1), due to the presence of the
Heaviside functions θ(d− 1), Eq. (50) reduces to:

Π
(n)
ij,βα =

∫ d

c

dy

[
P

R,(n)
ij (y) +

P
S,(n)
ij (y)

1− y

]
wα

(
xβ
y

)
+ P

L,(n)
ij δβα , (51)

which clearly follows Eq. (46). In the case 2), instead, we have:

Π
(n)
ij,βα =

∫ 1

c

dy

[
P

R,(n)
ij (y)wα

(
xβ
y

)
+

P
S,(n)
ij (y)

1− y

(
wα

(
xβ
y

)
− δβα

)]

+
[
P

S,(n)
ij (1) ln(1− c) + P

L,(n)
ij

]
δβα ,

(52)

and apparently, if α = β, the term proportional to ln(1 − c) could break the symmetry.
However, from Eq. (43), we know that in this case:

c = max(xβ , xβ/xβ+1) =
xβ
xβ+1

, (53)

because xβ+1 ≤ 1. In addition, on a logarithmically distributed grid we have that xβ+1 =
xβ exp(∆). Therefore, it turns out that:

ln(1− c) = ln

(
1−

xβ
xβ+1

)
= ln[1− exp(−∆)] , (54)

which is a constant which does not depend on the indices α and β and therefore satisfies
Eq. (46).

At this point, the DGLAP equations imply that the discretized PDFs evolve between
two scales t and t0 according to the following matrix equation:

q̃i(xβ , t) =
∑

γ,k

Γik,βγ(t, t0)q̃k(xγ , t0) , (55)

where it follows from Eq. (38) that the evolution operators are given by the solution of
the system: 




∂Γij,αβ(t, t0)

∂t
=
∑

γ,k

Πik,αγ(t)Γkj,γβ(t, t0)

Γij,αβ(t0, t0) = δijδαβ

(56)

Eq. (56) is a set of coupled first order ordinary linear differential equations for the evolution
operators Γij,αβ(t, t0). In APFEL Eq. (56) is solved using a fourth-order adaptive step-size
control Runge-Kutta (RK) algorithm. Note that no interpolation in t is involved, the
solution of the differential equations in t is only limited by the precision of the RK method.
Once the evolved PDFs at the grid values q̃i(xβ, t) have been determined by means of the
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evolution operators in Eq. (55), the value of these same PDFs for arbitrary values of x
will be computed using again higher-order interpolation.

A final consideration concerning the choice of interpolating grid in x is needed. As
is well known, an accurate solution of the DGLAP equations requires a denser grid at
large x, where PDFs have more structure than at small-x. In APFEL it is not possible to
use an x-grid with variable spacing that allows to have a denser grid at large x and at
the same time to maintain the symmetry that allows to substantially reduce the number
of integrals to be evaluated, see Eq. (46). In fact, a logarithmically distributed x grid
necessarily leads to a looser grid in the large-x region, thus potentially degrading the
evolution accuracy there. To overcome this problem, APFEL implements the possibility of
using different interpolation grids according to the value of x in which PDFs need to be
evaluated.

The basic idea is the following. The evolution of a given set of PDFs from the initial
condition at the scale µ0 up to some other scale µ is determined by the convolution
between the evolution operators and the boundary conditions, which implies performing
and integral between x and one. This convolution, when discretized on an interpolation x
grid, corresponds to Eq. (55). It is clear that such operation will use only those xβ nodes
of the interpolation grid that fall in the range between x and one.

Therefore, the computation of the PDF evolution in the large-x region using a loga-
rithmically spaced interpolation grid with a small value of xmin will be certainly inefficient,
since the convolution would use only a small number of points in the large-x region such
that xβ ≤ x ≤ 1, discarding those with x < xβ . In order to avoid this problem and si-
multaneously achieve a good accuracy and performance over the whole range in x, APFEL
gives the possibility to use different interpolating grids, each with a different value of xmin,
interpolation degree and number of points. Then, to compute the evolution of the PDFs
for the point x, the program will automatically select the grid with the largest value of
xmin compatible with the condition xmin ≤ x. In the user’s manual Sect. 4 we will describe
the functions that allow to select this option and achieve a good accuracy in the complete
x-range, while keeping always log-spaced interpolating grids.

The use of n ≥ 2 subgrids increases slightly the time taken by initialization phase,
since more evolution operators need to be precomputed, and also the actual evolution is
somewhat slower than in the case with a single grid (n = 1), with the important trade-off
of a much more accurate result in the large-x region. As default settings, APFEL uses n = 3
interpolation grids, with interpolation order 3, 5 and 5, number of points Nx = 80, 50 and
40 and xmin = 10−5, 0.1 and 0.8 respectively. These are the settings that have been used
in all the benchmark comparisons with other codes that we will discuss in Sect. 5.

4 APFEL library documentation

In this section we present the user manual for the APFEL library. Written in Fortran

77, all the functionalities can also be accessed via the C/C++ and Python interfaces. For
simplicity, we will restrict ourselves to the description of the C/C++ interface, but the usage
of the Fortran 77 and Python interfaces is very similar and examples of their use are
provided in the examples folder of the APFEL source code. First of all, we will discuss
how to install APFEL and how to execute the basic example programs. After that, we will
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list the various customization options that can be accessed by the user for both the PDF
evolution and the DIS structure functions modules. Finally, we will describe how to intall
the APFEL Graphical User Interface (GUI), giving some ebasic examples on ho to use the
associated plotting modules.

4.1 Installation and basic execution

The APFEL library is available from its HepForge website:

http://apfel.hepforge.org/

and it can also be accessed directly from the svn repository, both for the development
trunk:

svn checkout http://apfel.hepforge.org/svn/trunk apfel

as well as for the current stable release, in the case of v2.0.0 for instance one has:

svn checkout http://apfel.hepforge.org/svn/tags/2.0.0 apfel-2.0.0

The installation of the APFEL library can be easily performed using the standard autotools
sequence:

1 ./ configure

2 make

3 make install

which automatically installs APFEL in /usr/local/. Note that the APFEL library requires
an installation of the LHAPDF PDF library.4 To use a different installation path, one simply
needs to use the option:

1 ./ configure --prefix =/ path /to/the/installation /folder

In this case, the APFEL installation path should be included to the environmental variable
LD LIBRARY PATH. This can be done adding to the local .bashrc file (or .profile file on
Mac) the string:

1 export LD_LIBRARY_PATH =$LD_LIBRARY_PATH :/ path/to/the/installation /←֓

folder/lib

Once APFEL has been properly compiled and installed, the user has at her/his disposal
a set of routines that can be called from a main program. In the installation bin direc-
tory there is the apfel-config script, useful to determine the compiler flags in custom
makefiles, together with a shell script apfel which starts an interactive console session
of APFEL providing an immediate instrument to use the library without coding. In the
following we will illustrate these functionalities and how they can be accessed by the user.
The basic usage of APFEL requires only two steps to have the complete set of evolved PDFs.
The first step is the initialization of APFEL through the call of the following routine:

4The current release of APFEL assumes that LHAPDF5.9.0 or a more recent version has been previously
installed.
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1 InitializeAPFEL

This will precompute all the needed evolution operators that enter the discretized DGLAP
equation, as discussed in Sect. 3. Let us recall that once the general settings of the
evolution have been defined (perturbative order, heavy quark masses, reference value of
αs, and so on), the initialization needs to be performed only once, irrespective of the scales
that are used in the PDF evolution. The second step consists in performing the actual
PDF evolution between the initial scale Q0 and the final scale Q (in GeV). This can be
achieved using the routine:

1 EvolveAPFEL (Q0 ,Q)

With this routine APFEL numerically solves the discretized DGLAP equations in t using
the evolution operators precomputed in the initialization step. Now the user can access
the evolved PDFs at the scale Q via the use of the functions:

1 xPDF (i,x)

2 xgamma(x)

where the real variable x is the desired value of Bjorken-x while the integer variable i in
the function xPDF, which runs from −6 to 6, corresponds to quark flavor index according
to the same convention used in the LHAPDF library, that is:

i : −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
xPDF : t̄ b̄ c̄ s̄ ū d̄ g d u s c b t

In APFEL we have explicitly separated the access to the quark and gluon PDFs (via
xPDF) and from that to the photon PDF (via xgamma). Notice that the functions xPDF

and xgamma return x times the PDFs (the momentum fractions).
In addition to the PDF values, the user can also access the integer Mellin moments of

the PDFs,5 using the routines:

1 NPDF (i,N)

2 Ngamma(N)

which are useful for instance to evaluate the momentum and valence sum rules at the
scale Q, using N=2 and N=1 respectively. Finally, two functions return the value of the
QCD coupling αs and of the QED coupling α using the same settings used for the PDF
evolution, these are:

1 AlphaQCD (Q)

2 AlphaQED (Q)

5We follow the standard definition of Mellin moments:

NPDF(i, N) ≡

∫ 1

0

dx x
N−2

xPDF(i, x) . (57)
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In APFEL we use the exact numerical solution of the QCD beta function equations using
Runge-Kutta methods, while for the QED coupling the analytical leading-order solution
is used.

The basic information above is enough to write a simple and yet complete program to
perform PDF evolution using APFEL. As an illustration, a C/C++ program that computes
and tabulates PDFs to be compared with the Les Houches PDF benchmark evolution
tables [70,71] would be the following:

1 #include <iostream >

2 #include <iomanip >

3 #include <cmath >

4 #include "APFEL/APFEL.h"

5 using namespace std;

6

7 int main ()

8 {

9 // Define grid in x

10 double xlha [11] = {1e-7, 1e-6, 1e-5, 1e-4, 1e-3, 1e-2,

11 1e-1, 3e-1, 5e-1, 7e-1, 9e -1};

12

13 // Precomputes evolution operators on the grids nodes

14 APFEL:: InitializeAPFEL ();

15

16 // Set initial and final evolution scales

17 double Q02 , Q2 ,

18 cout << "Enter initial and final scales in GeV2 " << endl ;

19 cin >> Q02 >> Q2;

20

21 // Perform evolution

22 double Q0 = sqrt (Q02);

23 double Q = sqrt (Q2);

24 APFEL:: EvolveAPFEL (Q0 ,Q);

25

26 cout << scientific << setprecision (5) << endl ;

27

28 cout << "alpha_QCD (mu2F ) = " << APFEL:: AlphaQCD (Q) << endl ;

29 cout << "alpha_QED (mu2F ) = " << APFEL:: AlphaQED (Q) << endl ;

30 cout << endl ;

31

32 cout << " x "

33 << setw (11) << " u-ubar "

34 << setw (11) << " d-dbar "

35 << setw (11) << " 2( ubr+dbr) "

36 << setw (11) << " c+cbar "

37 << setw (11) << " gluon "

38 << setw (11) << " photon " << endl ;

39

40 cout << scientific ;

41

42 // Tabulate PDFs for the LHA x values

43 for (int i = 0; i < 11; i++)

44 cout << xlha [i] << "\t"

45 << APFEL:: xPDF (2, xlha [i]) - APFEL:: xPDF (-2, xlha [i]) << "\t"

46 << APFEL:: xPDF (1, xlha [i]) - APFEL:: xPDF (-1, xlha [i]) << "\t"
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47 << 2*( APFEL:: xPDF (-1, xlha [i]) + APFEL:: xPDF (-2, xlha [i])) << "\t"

48 << APFEL:: xPDF (4, xlha [i]) + APFEL:: xPDF (-4, xlha [i]) << "\t"

49 << APFEL:: xPDF (0, xlha [i]) << "\t"

50 << APFEL:: xgamma(xlha [i]) << "\t"

51 << endl ;

52

53 return 0;

54 }

This example code uses the default settings of APFEL for the evolution parameters such as
perturbative order, heavy quark masses, values of the couplings etc. Such default settings
correspond to those of the Les Houches benchmark at NNLO [70,71]. In the following we
will discuss how the user can choose her/his own settings for the PDF evolution in APFEL.

4.2 Customization of the PDF evolution

The customization of the PDF evolution with APFEL can be achieved using a number
of dedicated routines, to be called before the initialization stage, that is before calling
InitializeAPFEL. These routines are:

• SetTheory(Theory): this routine defines the theory to be used for the PDF evo-
lution. Using the notation for the various options for combining QCD and QED
evolution introduced in Sect. 2, the string variable Theory can take the following
values:

– "QCD" for pure QCD,

– "QED" for pure QED,

– "QCEDP" for QCD⊗QED in parallel,

– "QCEDS" for QCD⊗QED in series,

– "QECDP" for QED⊗QCD in parallel,

– "QECDS" for QED⊗QCD in series,

– "QavDP" for the averaged solution in parallel,

– "QavDS" for the averaged solution in series.

Let us recall that all the options for the solution of the combined QCD⊗QED evo-
lution equations are equivalent up to subleading O (ααs) terms.

• SetPerturbativeOrder(pt): this routine sets the perturbative order of the QCD
evolution. The integer variable pt can take the values 0, 1 or 2 corresponding to
LO, NLO and NNLO evolution respectively. The QED evolution, when activated,
is always LO.

• SetAlphaQCDRef(alphasref,Qref): this routine sets the reference value of the
QCD coupling αs, alphasref, at the reference scale, Qref in GeV.

• SetAlphaQEDRef(alpharef,Qref): same as SetAlphaQCDRef but for the QED cou-
pling α.
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• SetPoleMasses(mc,mb,mt): this routine sets the values for the heavy quark masses
in the pole mass scheme. The real variables mc, mb and mt correspond to the nu-
merical values in GeV of the pole heavy quark masses mc, mb and mt. Calling this
routine also determines that pole heavy quark masses are used as thresholds for the
VFN scheme PDF evolution.

• SetMSbarMasses(mc,mb,mt): this routine sets the values for the heavy quark masses
in the MS scheme. Here the real variables mc, mb and mt correspond to the numerical
values in GeV of the renormalization-group-invariant (RGI) heavy quark masses
mc(mc), mb(mb) and mt(mt). Calling this routine also determines that MS heavy
quark masses are used as thresholds for the VFN scheme PDF evolution.

• SetRenFacRatio(Ratio): this routine sets the ratio between renormalization and
factorization scales. The real variable Ratio corresponds to the ratio µR/µF . The
default choice in APFEL is Ratio=1. The modifications of the solutions of the DGLAP
evolution equations for µR 6= µF are discussed for instance in Sect. 2.2 of Ref. [45].

• SetVFNS: this routine determines that the variable-flavor-number scheme is used for
the PDF evolution.

• SetFFNS(NF): this routine determines that the fixed-flavor-number scheme is used
for the PDF evolution. The integer variable NF corresponds to the number of active
quark flavor and can then take any values between 3 and 6.

• SetMaxFlavourAlpha(NF): this routine sets the maximum number of active flavors
that enter the QCD and QED beta functions for the αs and α running. The integer
variable NF can then take any value between 3 and 6.

• SetMaxFlavourPDFs(NF): this routine sets the maximum number of active flavors
that can contribute to the PDF evolution. The integer variable NF can then take
any value between 3 and 6.

• SetPDFSet(name): this routine defines the PDF set to be evolved from the initial to
the final scale. The string variable name can take the value "ToyLH", corresponding
to the toy PDF model used in the Les Houches PDF benchmarks [72], or the name
(including the LHgrid extension) of any PDF set available from the LHAPDF library.

There is yet a third option, name="private", which can be easily modified by the
user (in src/toyLHPDFs.f) if new PDF boundary conditions not covered by the two
other options are required. Note that each time a new private parametrization is
coded, the library needs to be complied and installed again. By default, the routine
private is set to the toy parametrization adopted in the older benchmark study of
Ref. [73].

• SetReplica(irep): this routine selects the replica (for a Monte Carlo PDF set)
or the specific eigenvector (for Hessian PDF sets) of the PDF set defined above to
be evolved with APFEL. The integer variable irep can then take any value included
between 0 (the central PDFs) and the maximum number of PDF members contained
in the selected PDF set.
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• SetQLimits(Qmin,Qmax): this routine sets the scale bounds between which the
evolution can be performed. The real variables Qmin and Qmax correspond to the
numerical values of the lower and upper bounds (in GeV). On top of making sure
that PDF evolution is performed only in the physical range, this option also allows
to reduce the initialization time, for instance if Qmax is below some heavy quark
thresholds, reducing the number of evolution operators to be precomputed will be
smaller.

• SetNumberOfGrids(n): this routine sets the number of x-space interpolation grids
that will be used for the evolution. The integer variable n can be any positive integer
number.

• SetGridParameters(i,np,deg,xmin): this routine sets the parameters of the i-
th x-space interpolation grid. The integer variable i must be between 1 and n,
where the latter has been defined in SetNumberOfGrids(n). The integer variable
np corresponds to the number of (logarithmically distributed) points of the grid, the
integer variable deg corresponds to the interpolation degree and the real variable
xmin corresponds to the lower bound of the grid. The upper bound is always taken
to be equal to one.

As an illustration, if the user wants to perform the QCD evolution at NLO instead of
the default NNLO, she/he needs to add to the code above, before the initialization routine
InitializeAPFEL, a call to the corresponding function, that is:

1 APFEL:: SetPerturbativeOrder (1);

or if the user wants to use as a boundary condition for the PDF evolution a particular
set available through the LHAPDF interface, say NNPDF23 nlo as 0118 qed.LHgrid, she/he
needs to call before the initialization the following function:

1 APFEL:: SetPDFSet (" NNPDF23_nlo_as_0118_qed.LHgrid");

By default, APFEL will use the central replica of the selected PDF set. Varying any other
setting is similar, various example programs have been collected in the examples folder in
the APFEL source folder.

When modifying the default settings, particular care must be taken with the number
of interpolation grids, the number of points in each grid and the order of the interpolation.
The default settings in APFEL use three grids whose ranges and number of points have been
tuned to give accurate and fast results over a wide range of x, as discussed in Sect. 3. If
the default parameters are modified, the user should check that the accuracy is still good
enough, by comparing for instance with another run of APFEL with the default interpolation
parameters.

The folder examples in the APFEL source directory contains several examples that
further illustrate the functionalities of the code, and that can be used by the user as a
starting point towards a program that suits her/his particular physics needs. All these
examples are available in the three possible interfaces to APFEL: Fortran 77, C/C++ and
Python.
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4.3 Computation of the DIS observables

Now we turn to the description of the module that computes the DIS neutral- and charged-
current observables. This module can be either used together with the PDF evolution
provided by APFEL or directly interfaced to the LHAPDF library.

The computation of DIS structure functions is provided by a single routine, DIS xsec,
which takes a set of input parameters needed to specify the computation to be performed.
The usage of the DIS xsec routine is the following:

1 APFEL:: DIS_xsec (x,q0 ,q,y,proc ,scheme ,pto ,pdfset ,irep ,target ,proj ,F2 ,F3 ,FL←֓

,sigma);

where the input parameters are:

• the real variable x: the value of Bjorken x,

• the real variable q0: the value of the initial scale (in GeV) used in the PDF evolution
(this input is ignored if the LHAPDF evolution is used),

• the real variable q: the value of the scale (in GeV) where the DIS observables are to
be computed,

• the real variable y: the value of the inelasticity,

• the string variable proc: it can take the values "EM" for the purely electromagnetic
DIS observables (photon-only exchange), "NC" for neutral-current observables and
CC" for charged-current observables,

• the string variable scheme: it can take the values "FONLL" for FONLL, "FFNS" for
the FFN scheme and ZMVN" for the ZM-VFN scheme,

• the integer variable pto,: it can take the values 0, 1 or 2 corresponding to LO, NLO
and NNLO, respectively. Notice that choosing pto=1 with scheme="FONLL" implies
using the FONLL-A scheme, while choosing pto=2 with scheme="FONLL" leads to
using the FONLL-C scheme. The implementation of the FONLL-B scheme [52] is
postponed to a future release of the program.

• The string variable pdfset: it can take any of the PDF sets available in LHAPDF

(including the .LHgrid extension). This way APFEL will use the selected PDF set
to compute the DIS observables using the LHAPDF evolution rather than the internal
one. As an alternative, the user can choose pdfset="APFEL". This way the DIS
observables will be computed using the evolution provided by APFEL between the
scales q0 and q. For the setting of the PDF evolution, the user can refer to Sect. 4.2.

• The integer value irep: it specifies the member of the PDF set to be used,

• the string variable target: it takes the value "PROTON" in case the target is a
proton, "NEUTRON" in case the target is a neutron (assuming isospin symmetry) or
"ISOSCALAR" if the target is an isoscalar, e.g. a deuteron (also this option assumes
isospin asymmetry). There is a further option, which is target="IRON", which uses
the cross-section definition used in the NuTeV experiment which is on iron nuclei [74].
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• The string variable proj: it takes the values "ELECTRON" and "POSITRON" if proc="EM",
"NC", in case the projectile is either an electron or a positron. If instead proc="CC",
the variable proj can also take the values "NEUTRINO" or "ANTINEUTRINO" with
obvious meaning.

Once all these input parameters have been specified, the output array variables are F2,
F3, FL and sigma. Each of them has 5 entries corresponding to light, charm, bottom, top
and total components of the corresponding quantity, as described in Sect. 2.4. The user
should be careful because in the Fortran interface the arrays are numbered from 3 to 7
(e.g. F2(3) = F l

2, F2(4) = F c
2 , F2(5) = F b

2 , F2(6) = F t
2, F2(7) = F p

2 ), while in the C++
version the arrays run from 0 to 4 (e.g. F2(0) = F l

2, F2(1) = F c
2 , F2(2) = F b

2 , F2(3) =
F t
2 , F2(4) = F p

2 ). As in the case of the PDF evolution, the user will find an example on
how to use the DIS module in example folder.

4.4 The Graphical User Interface

The APFEL package provides also a Graphical User Interface (GUI) available in the apfel/apfelGUI
folder of the source code. The GUI provides a simple and fast way to access almost all the
features implemented in APFEL without the need to write any code. To use the GUI, the
system requirements are Qt4, a cross-platform application and UI framework, LHAPDF for
the PDF manipulation, and ROOT for the plotting resources.

The application is compiled by using the standard qmake commands:

1 cd apfelGUI /

2 qmake

3 make

This will produce the executable apfelgui that is located in the apfelGUI folder itself, un-
less the user is running on a Mac OS X operating system equipped with the Xcode. In this
case the executable should be found in the apfelGUI/apfelgui.app/Contents/MacOS/apfelgui
folder.6

While the use of the GUI should be self-explanatory, let us briefly present some of its
main ingredients. In Fig. 1 we show a snapshot of the main window and the PDF dialog
where the user can choose the PDFs to be used and select the desired plotting tool. The
program handles the two most common method for quantifying PDF uncertainties, the
Monte Carlo and the Hessian methods. Alternatively, the user can select a specific PDF
member/replica to perform the computation. This last option is particularly interesting
when considering PDF sets for αs variation. Once the PDF set has been selected, the PDF
dialog allows the user to choose between two main possibilities: the use LHAPDF embedded
evolution or the APFEL internal evolution taking the PDF input at some initial scale to be
specified in the command dashboard of each plotting tool.

The APFEL GUI, starting from version 2.0.0, contains the following plotting tools:

6In case the default language of the operating system is different from english, we recommend to use
the following command to run the GUI:

LC ALL=C ./apfelgui.app/Contents/MacOS/apfelgui

This ensures that the floating-point numbers are treated consistently.
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Figure 1: Snapshot of the main window on the left, and the PDF setup dialog on the
right.

• the “Members” tool: it plots all the members of a PDF set for a single parton flavor
at a user-defined energy scale.

• The “All flavors” tool: each PDF flavor is plotted together in the same canvas.
We also provide the possibility to scale PDF flavors by a predetermined factor.

• The “Compare” tool: it compares the same flavor of multiple PDF sets and the
respective uncertainties.

• The “Luminosity” tool: it performs the computation of parton luminosities [75]
normalized to a reference PDF set.

• The “DIS observables” tool: it computes the DIS observables as functions of x or
Q for different heavy quark schemes.

For all the various tools, there are several options for the graphical customization, like
setting the axis ranges and axis titles. In Fig. 2 an example of the “Compare” tool is showed.
APFEL also provides the possibility to save plots and the associated underlying data in
multiple formats. All the results provided by the GUI for PDFs and parton luminosities
from different PDF sets have been verified against the corresponding results from the PDF
benchmarking exercise of Ref. [2].

5 Validation and benchmarking

Having presented the methodology and the numerical techniques that APFEL adopts to
solve the coupled QCD⊗QED equations, and provided the relevant user documentation,
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Figure 2: Snapshot of the “Compare” tool available in the APFEL Graphical User Interface.

we now turn to compare APFEL with other publicly available codes. First of all, we perform
a detailed benchmarking of APFEL against HOPPET finding good agreement for the QCD
evolution up to NNLO, both with pole and MS heavy quark masses. Then we turn to
the validation of the combined QCD⊗QED evolution, and we compare the predictions of
APFEL, using various options for the solution of the coupled evolution equations, with the
partonevolution code, with the internal MRST04QED evolution and with the NNPDF
internal code FastKernel.

In this section we also provide a study of the consistency of the different methods
for the solution of the coupled QCD⊗QED evolution equations, and show that when the
QECD and QCED solutions are constructed iteratively in small steps in Q2 so as to avoid
introducing potentially large logarithms, they reduce numerically to the QavD solution.
Finally, we provide results for the benchmarking of the DIS structure function module of
APFEL.

5.1 QCD evolution

To begin with, we validate the QCD evolution in APFEL by comparing it with the results
from the HOPPET program, version 1.1.5, up to NNLO, and using both pole and MS heavy
quark masses. The settings are the same as in the original Les Houches PDF evolution
benchmark [71]. In the case of MS masses, we take the MS Renormalization-Group-
Invariant charm mass mc(mc) to have the same numerical values as the pole masses. In
all the comparisons in this section, the interpolation settings in APFEL are the default ones
discussed in Sect. 3.

Results for the evolved PDFs at Q2 = 104 GeV2 for both HOPPET and APFEL are
shown in Fig. 3. The left plot shows the results using pole masses, while the right plot
corresponds to the case of MS masses.7 Fig. 3 also shows the percent difference between

7In this latter case, the predictions from HOPPET were also compared with those of the internal NNPDF
code FastKernel in [76] finding good agreement.
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Figure 3: Comparison between PDFs evolved at NNLO in QCD using APFEL and HOPPET, from
Q2

0 =2 GeV2 up to Q2 =104 GeV2, using the Les Houches PDF benchmark settings. The compar-
ison is performed in the pole mass scheme (left) and in the MS scheme (right). The lower plots
show the percent differences between the two codes.

both predictions, to show the excellent agreement obtained for the whole range in x, being
at most ∼ 0.02% at large-x, where PDFs have more structure.

5.2 QED evolution

We present now the numerical comparison of APFEL with three different QCD⊗QED parton
evolution codes: first partonevolution, then the internal evolution program used in the
MRST04QED analysis, and finally the FastKernel program used in the NNPDF2.3QED
analysis

5.2.1 Comparison with partonevolution

To begin with, we compare the results for the coupled QCD⊗QED DGLAP evolution in
APFEL with those of the public partonevolution code [48,49], version 1.1.3.

To perform the benchmark, we use APFEL with the same settings used in the original
publication [48] to present the numerical results of partonevolution, i.e. we take the
input PDFs from the toy model used in the benchmarking exercise of Ref. [73], given by:

xuv(x) = Aux
0.5(1− x)3 , xdv(x) = Adx

0.5(1− x)4 ,

xS(x) = ASx
−0.2(1− x)7 , xg(x) = Agx

−0.2(1− x)5 ,

xc(x) = 0 , xc̄(x) = 0 , (58)

at the initial scale Q2
0 = 4 GeV2, with a SU(3) symmetric sea that carries 15% of the

proton’s momentum at Q2
0, and only four active quarks are considered even above the

bottom threshold. This toy model should not be confused with that used in the Les
Houches PDF benchmark study, used elsewhere in this paper. In addition, the photon
PDF is set to zero at the initial scale, that is γ(x,Q2

0) = 0.
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Figure 4: Comparison between PDFs evolved at NLO in QCD (without QED corrections) with
APFEL and partonevolution, from Q2

0 = 4 GeV2 up to Q2 = 104 GeV2. The same settings of the
PDF benchmark study of Ref. [73] have been used. The lower plot shows the percent differences
between the two codes.

In order to set up the baseline, we ran the two codes at NLO QCD only, switching off
the QED corrections. As can be seen from Fig. 4, good agreement is achieved. We can then
move to the combined QCD⊗QED evolution. Results are summarized in Fig. 5, where we
compare the evolution of quark, gluon and photon PDFs given by the two codes, using the
three different options for the solution of the coupled equations provided by APFEL: QCED,
QECD and QavD (see Sect. 2). Note that in the fixed-flavor-number scheme the distinction
between “series” and “parallel” solutions is immaterial. As expected, the best agreement
between the two codes is obtained with the QavD option. As discussed in Sect. 2, this
option ensures that the methods used for the solution of the evolution equations in the
two codes differ only by O

(
α2
)
terms rather than by the larger O (ααs) corrections. With

these settings the evolution of quarks and gluon is essentially identical, with differences
at most being O (0.01%), while differences in the evolution of γ(x,Q2) are below the few
percent level except at the largest values of x.

The other two options, QCED and QECD, lead to differences in the PDF evolution of order
O (ααs) as compared to the partonevolution solution, corrections that, while being
formally subleading, can be numerically large. For quark and gluon PDFs, the largest
differences are seen for the gluon PDF, which can be up to 0.5% at the largest values of x.
More substantial differences appear for the photon PDF, where of course higher-order QED
effects are expected to be sizable. In the case of γ(x,Q2), the three formally equivalent
solutions can differ by up to 70%, both at small and large-x. As will be discussed below
in Sect. 5.3, these large differences of the QCED and QECD solutions arise from unresummed
large logarithms of the QCD and QED factorization scales. However, let us also recall
that the order of magnitude is similar to that obtained in the comparison of LO and NLO
evolution for the gluon PDF in QCD [77].
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Figure 5: Comparison between PDFs evolved at NLO in QCD and LO and QED using APFEL and
partonevolution, from Q2

0 =4 GeV2 up Q2
0 =104 GeV2 The same settings of the PDF benchmark

study of Ref. [73] have been used. We show the comparison of quark and gluon PDFs using
in APFEL the QCEDP solution (upper left plot), the QECDP solution (upper right plot), the QavDP

solution (lower left plot) and then the photon PDF γ(x,Q2) in the two codes for the different
APFEL options. For each comparison, we also show the percent differences with respect to the
partonevolution results.

5.2.2 Comparison with MRST04QED

Another instructive comparison is provided by the QED evolution used in the determina-
tion of the MRST04QED parton distributions [32]. Though the original evolution code
is not publicly available, the evolution which was used can be indirectly accessed via the
public LHAPDF grids. In this case, it is not possible to use the Les Houches benchmark set-
tings, and we are instead forced to use the same boundary conditions for the PDFs at Q0

as those used in the MRST04QED fit as well as the same values of the heavy quark masses
and reference coupling constants. The available MRST04QED fit was obtained at NLO
in QCD in the VFN scheme, therefore it is possible to perform a meaningful comparison
with the results of their evolution by using APFEL at NLO with the same settings.

The comparison between the APFEL predictions and the MRST04QED evolution is
shown in Fig. 6. PDFs have been evolved using APFEL and the internal MRST evolution
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Figure 6: Comparison between PDFs evolved using APFEL and the internal MRST04QED parton
evolution, from Q2

0 =2 GeV2 up to Q2 =104 GeV2. The boundary conditions for the PDFs are
the same as those of the MRST04QED fit. PDF evolution is performed at NLO in QCD and
LO in QED, in the variable-flavor number scheme. We show the comparison of quark and gluon
PDFs using in APFEL the QCEDP solution (upper left plot), the QECDP solution (upper right plot),
the QavDP solution (lower left plot) and then the photon PDF γ(x,Q2) in the two codes for the
different APFEL options.

from Q2
0 =2 GeV2 up to Q2 =104 GeV2. We have explored the same three different

options for the QCD⊗QED combined evolution provided by APFEL as in the comparison
with partonevolution, which differ only in the treatment of formally subleading terms.
As can be seen from Fig. 6, for the evolution of the photon PDF the best agreement
between APFEL and MRST04QED is achieved when the QavDP solution is used. The
differences in this case are 1% at most for γ(x,Q2) and much smaller for quark and gluon
PDFs. It is also clear from Fig. 6 that other different options for solving the evolution
equations in the presence of QED effects have a small impact on the evolution of quark
and gluon PDFs, but for the photon PDF they can lead to differences up to 40% at
small-x, for the reasons explained above. On the other hand, it should be taken into
account that theoretical uncertainties in the QED evolution are subdominant with respect
to the experimental uncertainties in the photon PDF at small-x [33], due to the lack of
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experimental constraints.

5.2.3 Comparison with FastKernel

The third validation test of the QED evolution is provided by comparing the results of
APFEL with the predictions given by the FastKernel internal NNPDF code [75]. This
comparison is illustrative since the FastKernel code was used in the derivation of the
NNPDF2.3QED sets, presented in Ref. [33] and where the FastKernel was compared
to the partonevolution code finding reasonable agreement, with some small differences
arising from a different treatment of the subleading terms. Now we revisit this issue using
the APFEL flexibility to explore different options for the solution of the QCD⊗QED coupled
evolution equations.
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Figure 7: The evolution of the photon PDF γ(x,Q2) at NLO in QCD and LO in QED for various
values of Q2, performed both with APFEL and with FastKernel. The Les Houches benchmark
settings have been used, supplemented by the boundary condition xγ(x,Q2

0
) = 0, with Q2

0
=

2 GeV2. For APFEL, the QECDS solution has been used. The lower plot shows the percent difference
between the two calculations.

The basic strategy underlying the FastKernel code [51] is to solve the evolution
equations in Mellin space and then invert the evolution kernels back to x space, where
they are convoluted with the initial x-space PDFs to obtain the evolved PDFs. The
NNPDF2.3QED sets use the truncated solution for the Mellin space DGLAP equations,
and so cannot directly be compared with APFEL, which is based instead on the expanded
solution (as any x-space code). Therefore, for the purpose of this benchark comparison, we
have produced the combined NLO QCD and LO QED predictions with the FastKernel

code using the expanded solution of the Mellin space equations, and compared them to
the APFEL results.

The comparison is presented in Fig. 7. We show the evolution of the photon PDF
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γ(x,Q2) at NLO in QCD and LO in QED for various values of Q2, performed both with
APFEL and with the FastKernel code. For APFEL, the QECDS solution has been used:
this is indeed equivalent to the procedure that has been used in the NNPDF2.3QED fits.
The Les Houches benchmark settings have been adopted, supplemented by the boundary
condition γ(x,Q2

0) = 0, with Q2
0 =2 GeV2. In the lower plot of Fig. 7 we provide the

percent differences between the two calculations. As can be seen, differences are small, at
the few per-mil level, showing that the two codes are in good agreement when common
settings are adopted.

In summary, the QCD⊗QED evolution used in the NNPDF2.3QED fits differs from
that used in other codes, such as partonevolution and MRST04QED, only by higher-
order terms: truncated versus iterated solution of the evolution equations in Mellin space
and different treatment of the subleading O (ααs) terms. As has been shown in Figs. 5
and 6, while for quark and gluon PDFs these differences are small, for the photon PDF
these inherent theoretical uncertainties are substantial and could possibly be reduced in-
cluding higher-order corrections in the QED coupling in the combined evolution equations.
Such improvements might be required by future, more precise experimental data.

5.3 Consistency of the coupled solution

Now we turn to discuss the consistency of the procedure adopted in APFEL to combine
the solutions of the QCD and QED evolution equations. As presented in Sect. 2, the
combination of QCD and QED solutions in APFEL is perfomed at the level of the evolution
operators, rather than at the level of splitting functions, as done, for instance, in the
partonevolution and MRST04QED codes. This procedure leads to the introduction of
two different factorization scales, µQCD and µQED, which in principle are allowed to vary
in a fully independent way.

A possible objection to this approach is that, in the case in which µQCD and µQED are
very different from each other, this procedure might lead to the presence of numerically
large, unresummed logarithms. On the other hand, in Sect. 2 we showed that these terms
are O (ααs) for the QECD and the QCED solutions and O

(
α2
)
for the QavD solution, that

are both perturbatively subleading.
In order quantify the impact of these potentially large (subleading) logarithms, we have

performed with APFEL the combination of QCD and QED evolutions not over the whole
(possibly large) [Q0, Q] range, but rather dividing it in small intervals [Q0, Q1], [Q1, Q2],
. . ., [QN , Q], and performing the combination on each interval. This procedure ensures
that no artificially large logarithm of two widely different scales appears in the solution.
An example of how to construct this small-step approximation with the available functions
of APFEL has been included in the example folder of the main source folder.

As an illustration, using again the settings of the Les Houches PDF evolution bench-
mark [71], supplemented by the ansatz γ(x,Q0) = 0, we have evolved the PDFs between
Q2

0 = 2 GeV2 and Q2 = 10000 GeV2. We have then compared the standard, single-step
solution with the new solution sketched above and based on combining the results of many
small evolution steps. As expected, no significant differences were observed for quarks and
gluon, so in the following we concentrate on the different results for the evolution of the
photon PDF.

In Fig. 8 we compare the standard QavD solution, performed with a single step between
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Q2
0 and Q2, with the corresponding solution where the full range

[
Q2

0, Q
2
]
has been divided

into 100 logarithmically spaced intervals. In the bottom panel of Fig. 8 we show the
percentage difference between the two results: reasonable agreement is found, with small
residual differences at the level of 2% at most. This comparison confirms that the QavDP

solution adopted in APFEL is free of numerically large scale logarithms and that a single
Q2 interval leads to reliable results. The small impact of potentially large logarithms can
be explained considering that they are suppressed by a factor α2.
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Figure 8: Evolution of the photon PDF γ(x,Q2) between Q2

0
= 2 GeV2 and 104 GeV2 with the

QavDP solution. We compare the evolution performed with a single step with that obtained with
100 steps logarithmically spaced in Q2. The lower panel shows the percentage differences between
the two methods.

Once we have explicitly verified that no large unresummed logarithms are present in
the QavD solution, we turn to consider the QECD and the QCED solutions. The results for
the 100-step evolution of the photon PDFs in these two cases are shown in Fig. 9 and
compared to the one-step QavD solution. We see that, unlike the case where a single
step is used (see Fig. 6) and where differences up to 40% were observed (though only
for small values of x), now differences between the three solutions are 2% at most. This
suggests that the O (ααs) logarithmic terms that affect the QECD and the QCED solutions
are numerically large and may spoil the respective perturbative evolution unreliable if the
evolution interval is too wide.

Therefore, we can conclude that the QavD solution of the coupled QCD⊗QED evolution
equations is the most reliable one, since in this case potentially large unresummed scale
logarithms are absent. On the other hand, this analysis also shows that the QECD and
the QCED solutions may introduce artificially large logarithms and that an effective way
to cancel them is to perform the evolution in small steps combining sequentially the
results. In this case, the results from the QECD and the QCED solutions coincide to a good
approximation with that of the QavD solution, so that all three strategies lead to the same
numerical solution.
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0
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solutions with 100 logarithmically spaced steps. The lower panel shows the percentage differences
between the two methods.

5.4 Deep-Inelastic Scattering structure functions

Finally, in this section we briefly document the benchmarking of the DIS module imple-
mented in APFEL against the publicly available code FONLLdis [52], which computes the
charm structure functions in the FONLL GM-VFN scheme using the exact x-space O

(
α2
s

)

heavy quark coefficient functions. The FONLLdis code provides predictions for the electro-
magnetic structure functions F l

2, F
c
2 , F

l
L and F c

L up to O
(
α2
s

)
in the FONLL scheme. In

Fig. 10 we compare the predictions for F l
2 (left plot) and F c

2 (right plot) at Q2 = 10 GeV2

obtained with APFEL with those obtained with FONLLdis using the Les Houches heavy
quark Benchmark settings [78]. As can be seen from the bottom panel of Fig. 10, the
relative differences between APFEL and FONLLdis are always well below the percent level
for F c

2 and at most of 1.3% for F l
2: a more than reasonable accuracy for phenomenology.

6 Conclusions and outlook

APFEL is a new PDF evolution library that combines NNLO QCD corrections with LO
QED effects in the solution of the DGLAP equations. It is the first public evolution code
that allows to perform the coupled QCD⊗QED evolution up to NNLO in αs and LO in α,
both in the FFN and VFN schemes, and using either pole or MS heavy quark masses. It
is fast, accurate, and flexible, and can be easily accessed through its Fortran 77, C/C++
and Python interfaces. From version 2.0.0, the APFEL capabilities have been extended
to include a new module that computes neutral- and charged-current DIS observables
up to O(α2

s) in the FONLL scheme [52]. In addition, we provide a flexible user-friendly
Graphical User Interface which provides access to all of the APFEL functionalities without
the need of writing code and to produce high-quality plots in various different formats.
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Figure 10: Comparison between APFEL and FONLLdis [52] for the charm structure function F c
2

(left) and the light structure function F l
2
(right) in the FONLL-C scheme in the range x ∈ [10−5 :

10−1] at Q2 = 10 GeV2. The lower panel displays the percentage different in percent between the
two computations.

Given the relevance of QED and electroweak corrections for precision theoretical pre-
dictions at the LHC in the coming years, and the corresponding needs for parton distri-
butions that consistently include QED effects, we believe that a library like APFEL can
become a useful tool for the PDF fitting community.

In the short term, we plan to extend the capabilities of APFEL to include the solution of
DGLAP equations with (N)NLO time-like splitting functions [79], such as those required
in global fits of fragmentation functions [80], as well as the evolution for polarized PDFs
up to NLO, which could be of interest in the determinations of spin-dependent parton
distributions [81–83]. Another feature foreseen in future releases is the implementation of
different factorization schemes for the PDF evolution, such as the DIS or the AB scheme,
the latter useful in the context of polarized fits [84]. In addition, while the current release
of APFEL allows only the evolution of the proton PDFs, future releases will also allow to
simultaneously evolve both proton and neutron PDFs. This feature is important to enable
dedicated studies of isospin symmetry violation, both at low scales (non-perturbative) and
at high scales, with an additional component generated dynamically by the presence of
QED effects in the evolution [32,33].

In a longer timescale, an appealing possibility consists of the inclusion of high-energy
(small-x) resummation effects in the splitting functions [85, 86] and their matching with
the fixed order expressions, a feature which is not present in any public evolution code yet.
Another possible interesting extension, where more theory work is also required, would be
the implementation of the pure electroweak corrections to PDF evolution [87,88]. In order
to improve the perturbative accuracy of the QED evolution in the DGLAP evolution, one
could attempt to achieve higher-order accuracy in α. This would imply the inclusion of the
mixed splitting functions, proportional to O (ααs), as well as of the O

(
α2
)
corrections,

requiring however substantial modifications in the structure of APFEL. Including higher-
order corrections in the QED expansion might eventually be required when future, more
accurate LHC data in processes like low- and high-mass Drell-Yan production and high
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invariant mass WW production become available. Another possibility worth exploring in
this sense is the use of precise data on photo-production at HERA [89] to obtain additional
information of the photon PDF.

The APFEL program is available from its HepForge website:

http://apfel.hepforge.org/

and it can also be accessed directly from the svn repository, both the development trunk:

svn checkout http://apfel.hepforge.org/svn/trunk apfel

as well as the current stable release:

svn checkout http://apfel.hepforge.org/svn/tags/2.0.0 apfel-2.0.0
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[27] J. Kühn, A. Scharf and P. Uwer, (2013), 1305.5773.

39



[28] K. Mishra et al., (2013), 1308.1430.

[29] A. De Rujula, R. Petronzio and A. Savoy-Navarro, Nucl.Phys. B154 (1979) 394.

[30] J. Kripfganz and H. Perlt, Z.Phys. C41 (1988) 319.

[31] J. Blumlein, Z.Phys. C47 (1990) 89.

[32] A.D. Martin et al., Eur. Phys. J. C39 (2005) 155, hep-ph/0411040.

[33] The NNPDF Collaboration, R.D. Ball et al., (2013), 1308.0598.

[34] S. Carrazza, (2013), 1307.1131.

[35] S. Carrazza, (2013), 1305.4179.

[36] D. Bourilkov, R.C. Group and M.R. Whalley, (2006), hep-ph/0605240.

[37] T. Sjostrand, S. Mrenna and P.Z. Skands, Comput. Phys. Commun. 178 (2008) 852,
0710.3820.

[38] S. Carrazza, S. Forte and J. Rojo, (2013), 1311.5887.

[39] G.P. Salam and J. Rojo, Comput. Phys. Commun. 180 (2009) 120, 0804.3755.

[40] A. Cafarella, C. Coriano and M. Guzzi, Comput.Phys.Commun. 179 (2008) 665,
0803.0462.

[41] M. Botje, Comput.Phys.Commun. 182 (2011) 490, 1005.1481.

[42] P.G. Ratcliffe, Phys.Rev. D63 (2001) 116004, hep-ph/0012376.

[43] L. Schoeffel, Nucl.Instrum.Meth. A423 (1999) 439.

[44] C. Pascaud and F. Zomer, (2001), hep-ph/0104013.

[45] A. Vogt, Comput. Phys. Commun. 170 (2005) 65, hep-ph/0408244.

[46] D.A. Kosower, Nucl.Phys. B506 (1997) 439, hep-ph/9706213.

[47] H. Spiesberger, Phys.Rev. D52 (1995) 4936, hep-ph/9412286.

[48] M. Roth and S. Weinzierl, Phys.Lett. B590 (2004) 190, hep-ph/0403200.

[49] S. Weinzierl, Comput.Phys.Commun. 148 (2002) 314, hep-ph/0203112.

[50] The NNPDF collaboration, L. Del Debbio et al., JHEP 03 (2007) 039, hep-
ph/0701127.

[51] The NNPDF Collaboration, R.D. Ball et al., Nucl. Phys. B809 (2009) 1, 0808.1231.

[52] S. Forte et al., Nucl. Phys. B834 (2010) 116, 1001.2312.

[53] The NNPDF Collaboration, R.D. Ball et al., Phys.Lett. B723 (2013) 330, 1303.1189.

40



[54] G. Altarelli and G. Parisi, Nucl. Phys. B126 (1977) 298.

[55] V.N. Gribov and L.N. Lipatov, Sov. J. Nucl. Phys. 15 (1972) 438.

[56] Y.L. Dokshitzer, Sov. Phys. JETP 46 (1977) 641.

[57] E. Floratos, D. Ross and C. Sachrajda, Nucl.Phys. B129 (1977) 66.

[58] E. Floratos, D. Ross and C. Sachrajda, Nucl.Phys. B152 (1979) 493.

[59] A. Gonzalez-Arroyo, C. Lopez and F. Yndurain, Nucl.Phys. B153 (1979) 161.

[60] E. Floratos, C. Kounnas and R. Lacaze, Nucl.Phys. B192 (1981) 417.

[61] G. Curci, W. Furmanski and R. Petronzio, Nucl.Phys. B175 (1980) 27.

[62] S. Moch, J. Vermaseren and A. Vogt, Nucl.Phys. B688 (2004) 101.

[63] S. Moch, J. Vermaseren and A. Vogt, Phys. Lett. B691 (2004) 129.

[64] M. Buza et al., Nucl. Phys. B472 (1996) 611, hep-ph/9601302.

[65] H1 Collaboration, F. Aaron et al., JHEP 1209 (2012) 061, 1206.7007.

[66] R.D. Ball et al., Nucl. Phys. B849 (2011) 296, 1101.1300.

[67] M. Aivazis et al., Phys.Rev. D50 (1994) 3102, hep-ph/9312319.

[68] M. Guzzi et al., Phys.Rev. D86 (2012) 053005, 1108.5112.

[69] R. Thorne, Phys.Rev. D86 (2012) 074017, 1201.6180.

[70] W. Giele et al., (2002), hep-ph/0204316.

[71] M. Dittmar et al., (2005), hep-ph/0511119.

[72] W. Giele et al., (2002) 275, hep-ph/0204316.

[73] J. Blumlein et al., (1996), hep-ph/9609400.

[74] NuTeV, M. Goncharov et al., Phys. Rev. D64 (2001) 112006, hep-ex/0102049.

[75] The NNPDF collaboration, R.D. Ball et al., Nucl. Phys. B838 (2010) 136, 1002.4407.

[76] V. Bertone and J. Rojo, AIP Conf.Proc. 1523 (2012) 51, 1212.0741.

[77] NNPDF Collaboration, R.D. Ball et al., Nucl.Phys. B855 (2012) 153, 1107.2652.

[78] SM and NLO Multileg Working Group, J. Andersen et al., (2010) 21, 1003.1241.

[79] A. Mitov, S. Moch and A. Vogt, Phys.Lett. B638 (2006) 61, hep-ph/0604053.

[80] D. de Florian, R. Sassot and M. Stratmann, Phys.Rev. D76 (2007) 074033, 0707.1506.

[81] The NNPDF Collaboration, R.D. Ball et al., Nucl.Phys. B874 (2013) 36, 1303.7236.

41



[82] D. de Florian et al., Phys. Rev. D80 (2009) 034030, 0904.3821.

[83] E. Leader, A.V. Sidorov and D.B. Stamenov, Phys.Rev. D82 (2010) 114018,
1010.0574.

[84] G. Altarelli et al., Acta Phys.Polon. B29 (1998) 1145, hep-ph/9803237.

[85] G. Altarelli, R.D. Ball and S. Forte, Nucl. Phys. B799 (2008) 199, 0802.0032.

[86] M. Ciafaloni et al., JHEP 0708 (2007) 046, 0707.1453.

[87] M. Ciafaloni, P. Ciafaloni and D. Comelli, Phys.Rev.Lett. 88 (2002) 102001, hep-
ph/0111109.

[88] P. Ciafaloni and D. Comelli, JHEP 0511 (2005) 022, hep-ph/0505047.

[89] M. Klasen, Rev.Mod.Phys. 74 (2002) 1221, hep-ph/0206169.

42


	1 Introduction
	2 DGLAP evolution with QED corrections
	2.1 Solving the QED evolution equations
	2.2 Combining the QCD and QED evolution operators
	2.3 QCDQED combined evolution in the VFN scheme
	2.4 Deep-Inelastic Scattering structure functions

	3 Numerical techniques
	4 APFEL library documentation
	4.1 Installation and basic execution
	4.2 Customization of the PDF evolution
	4.3 Computation of the DIS observables
	4.4 The Graphical User Interface

	5 Validation and benchmarking
	5.1 QCD evolution
	5.2 QED evolution
	5.2.1 Comparison with partonevolution
	5.2.2 Comparison with MRST04QED
	5.2.3 Comparison with FastKernel

	5.3 Consistency of the coupled solution
	5.4 Deep-Inelastic Scattering structure functions

	6 Conclusions and outlook

