164 research outputs found

    X-linked disorders with cerebellar dysgenesis

    Get PDF
    X-linked disorders with cerebellar dysgenesis (XLCD) are a genetically heterogeneous and clinically variable group of disorders in which the hallmark is a cerebellar defect (hypoplasia, atrophy or dysplasia) visible on brain imaging, caused by gene mutations or genomic imbalances on the X-chromosome. The neurological features of XLCD include hypotonia, developmental delay, intellectual disability, ataxia and/or other cerebellar signs. Normal cognitive development has also been reported. Cerebellar dysgenesis may be isolated or associated with other brain malformations or multiorgan involvement. There are at least 15 genes on the X-chromosome that have been constantly or occasionally associated with a pathological cerebellar phenotype. 8 XLCD loci have been mapped and several families with X-linked inheritance have been reported. Recently, two recurrent duplication syndromes in Xq28 have been associated with cerebellar hypoplasia. Given the report of several forms of XLCD and the excess of males with ataxia, this group of conditions is probably underestimated and families of patients with neuroradiological and clinical evidence of a cerebellar disorder should be counseled for high risk of X-linked inheritance

    miRNAs as serum biomarkers for Duchenne muscular dystrophy

    Get PDF
    Dystrophin absence in Duchenne muscular dystrophy (DMD) causes severe muscle degeneration. We describe that, as consequence of fibre damage, specific muscle-miRNAs are released in to the bloodstream of DMD patients and their levels correlate with the severity of the disease. The same miRNAs are abundant also in the blood of mdx mice and recover to wild-type levels in animals ‘cured’ through exon skipping. Even though creatine kinase (CK) blood levels have been utilized as diagnostic markers of several neuromuscular diseases, including DMD, we demonstrate that they correlate less well with the disease severity. Although the analysis of a larger number of patients should allow to obtain more refined correlations with the different stages of disease progression, we propose that miR-1, miR-133, and miR-206 are new and valuable biomarkers for the diagnosis of DMD and possibly also for monitoring the outcomes of therapeutic interventions in humans. Despite many different DMD therapeutic approaches are now entering clinical trials, a unifying method for assessing the benefit of different treatments is still lacking

    Timed rise from floor as a predictor of disease progression in Duchenne muscular dystrophy: An observational study

    Get PDF
    The role of timed items, and more specifically, of the time to rise from the floor, has been reported as an early prognostic factor for disease progression and loss of ambulation. The aim of our study was to investigate the possible effect of the time to rise from the floor test on the changes observed on the 6MWT over 12 months in a cohort of ambulant Duchenne boys.A total of 487 12-month data points were collected from 215 ambulant Duchenne boys. The age ranged between 5.0 and 20.0 years (mean 8.48 ±2.48 DS).The results of the time to rise from the floor at baseline ranged from 1.2 to 29.4 seconds in the boys who could perform the test. 49 patients were unable to perform the test at baseline and 87 at 12 month The 6MWT values ranged from 82 to 567 meters at baseline. 3 patients lost the ability to perform the 6mwt at 12 months. The correlation between time to rise from the floor and 6MWT at baseline was high (r = 0.6, p<0.01).Both time to rise from the floor and baseline 6MWT were relevant for predicting 6MWT changes in the group above the age of 7 years, with no interaction between the two measures, as the impact of time to rise from the floor on 6MWT change was similar in the patients below and above 350 m. Our results suggest that, time to rise from the floor can be considered an additional important prognostic factor of 12 month changes on the 6MWT and, more generally, of disease progression

    Mutation update and genotype-phenotype correlations of novel and previously described mutations in TPM2 and TPM3 causing congenital myopathies

    Get PDF
    Mutations affecting skeletal muscle isoforms of the tropomyosin genes may cause nemaline myopathy, cap myopathy, core-rod myopathy, congenital fiber-type disproportion, distal arthrogryposes, and Escobar syndrome. We correlate the clinical picture of these diseases with novel (19) and previously reported (31) mutations of the TPM2 and TPM3 genes. Included are altogether 93 families: 53 with TPM2 mutations and 40 with TPM3 mutations. Thirty distinct pathogenic variants of TPM2 and 20 of TPM3 have been published or listed in the Leiden Open Variant Database (http://www.dmd.nl/). Most are heterozygous changes associated with autosomal-dominant disease. Patients with TPM2 mutations tended to present with milder symptoms than those with TPM3 mutations, DA being present only in the TPM2 group. Previous studies have shown that five of the mutations in TPM2 and one in TPM3 cause increased Ca2+ sensitivity resulting in a hypercontractile molecular phenotype. Patients with hypercontractile phenotype more often had contractures of the limb joints (18/19) and jaw (6/19) than those with nonhypercontractile ones (2/22 and 1/22), whereas patients with the non-hypercontractile molecular phenotype more often (19/22) had axial contractures than the hypercontractile group (7/19). Our in silico predictions show that most mutations affect tropomyosin–actin association or tropomyosin head-to-tail binding

    Novel NDUFA12 variants are associated with isolated complex I defect and variable clinical manifestation

    Get PDF
    Isolated biochemical deficiency of mitochondrial complex I is the most frequent signature among mitochondrial diseases and is associated with a wide variety of clinical symptoms. Leigh syndrome represents the most frequent neuroradiological finding in patients with complex I defect and more than 80 monogenic causes have been involved in the disease. In this report, we describe seven patients from four unrelated families harboring novel NDUFA12 variants, with six of them presenting with Leigh syndrome. Molecular genetic characterization was performed using next-generation sequencing combined with the Sanger method. Biochemical and protein studies were achieved by enzymatic activities, blue native gel electrophoresis, and western blot analysis. All patients displayed novel homozygous mutations in the NDUFA12 gene, leading to the virtual absence of the corresponding protein. Surprisingly, despite the fact that in none of the analyzed patients, NDUFA12 protein was detected, they present a different onset and clinical course of the disease. Our report expands the array of genetic alterations in NDUFA12 and underlines phenotype variability associated with NDUFA12 defect

    Case Series and DARS2 Variant Analysis in Early Severe Forms With Unexpected Presentations

    Get PDF
    Objective: Leukoencephalopathy with brainstem and spinal cord involvement and lactate elevation (LBSL) is regarded a relatively mild leukodystrophy, diagnosed by characteristic long tract abnormalities on MRI and biallelic variants in DARS2, encoding mitochondrial aspartyl-tRNA synthetase (mtAspRS). DARS2 variants in LBSL are almost invariably compound heterozygous; in 95% of cases, 1 is a leaky splice site variant in intron 2. A few severely affected patients, still fulfilling the MRI criteria, have been described. We noticed highly unusual MRI presentations in 15 cases diagnosed by WES. We examined these cases to determine whether they represent consistent novel LBSL phenotypes. Methods: We reviewed clinical features, MRI abnormalities, and gene variants and investigated the variants' impact on mtAspRS structure and mitochondrial function. Results: We found 2 MRI phenotypes: early severe cerebral hypoplasia/atrophy (9 patients, group 1) and white matter abnormalities without long tract involvement (6 patients, group 2). With antenatal onset, microcephaly, and arrested development, group 1 patients were most severely affected. DARS2 variants were severer than for classic LBSL and severer for group 1 than group 2. All missense variants hit mtAspRS regions involved in tRNAAsp binding, aspartyl-adenosine-5'-monophosphate binding, and/or homodimerization. Missense variants expressed in the yeast DARS2 ortholog showed severely affected mitochondrial function. Conclusions: DARS2 variants are associated with highly heterogeneous phenotypes. New MRI presentations are profound cerebral hypoplasia/atrophy and white matter abnormalities without long tract involvement. Our findings have implications for diagnosis and understanding disease mechanisms, pointing at dominant neuronal/axonal involvement in severe cases. In line with this conclusion, activation of biallelic DARS2 null alleles in conditional transgenic mice leads to massive neuronal apoptosis

    Priority strategies to improve gender equity in Canadian emergency medicine: proceedings from the CAEP 2021 Academic Symposium on leadership

    Get PDF
    Objectives: Gender inequities are deeply rooted in our society and have significant negative consequences. Female physicians experience numerous gender-related inequities (e.g., microaggressions, harassment, violence). These inequities have far-reaching consequences on health, well-being and career longevity and may result in the devaluing of various strengths that female emergency physicians bring to the table. This, in turn, has an impact on patient healthcare experience and outcomes. During the 2021 Canadian Association of Emergency Physicians (CAEP) Academic Symposium, a national collaborative sought to understand gender inequities in emergency medicine in Canada. Methods: We used a multistep stakeholder-engagement-based approach (harnessing both quantitative and qualitative methods) to identify and prioritize problems with gender equity in emergency medicine in Canada. Based on expert consultation and literature review, we developed recommendations to effect change for the higher priority problems. We then conducted a nationwide consultation with the Canadian emergency medicine community via online engagement and the CAEP Academic Symposium to ensure that these priority problems and solutions were appropriate for the Canadian context. Conclusion: Via the above process, 15 recommendations were developed to address five unique problem areas. There is a dearth of research in this important area and we hope this preliminary work will serve as a starting point to fuel further research. To facilitate these scholarly endeavors, we have appended additional documents identifying other key problems with gender equity in emergency medicine in Canada as well as proposed next steps for future research

    Randomized phase 2 trial and open-label extension of domagrozumab in Duchenne muscular dystrophy.

    Get PDF
    We report results from a phase 2, randomized, double-blind, 2-period trial (48 weeks each) of domagrozumab and its open-label extension in patients with Duchenne muscular dystrophy (DMD). Of 120 ambulatory boys (aged 6 to \u3c16 \u3eyears) with DMD, 80 were treated with multiple ascending doses (5, 20, and 40 mg/kg) of domagrozumab and 40 treated with placebo. The primary endpoints were safety and mean change in 4-stair climb (4SC) time at week 49. Secondary endpoints included other functional tests, pharmacokinetics, and pharmacodynamics. Mean (SD) age was 8.4 (1.7) and 9.3 (2.3) years in domagrozumab- and placebo-treated patients, respectively. Difference in mean (95% CI) change from baseline in 4SC at week 49 for domagrozumab vs placebo was 0.27 (-7.4 to 7.9) seconds (p = 0.94). There were no significant between-group differences in any secondary clinical endpoints. Most patients had ≥1 adverse event in the first 48 weeks; most were mild and not treatment-related. Median serum concentrations of domagrozumab increased with administered dose within each dose level. Non-significant increases in muscle volume were observed in domagrozumab- vs placebo-treated patients. Domagrozumab was generally safe and well tolerated in patients with DMD. Efficacy measures did not support a significant treatment effect. Clinicaltrials.gov identifiers: NCT02310763 and NCT02907619

    HiTSEE KNIME: a visualization tool for hit selection and analysis in high-throughput screening experiments for the KNIME platform

    Get PDF
    We present HiTSEE (High-Throughput Screening Exploration Environment), a visualization tool for the analysis of large chemical screens used to examine biochemical processes. The tool supports the investigation of structure-activity relationships (SAR analysis) and, through a flexible interaction mechanism, the navigation of large chemical spaces. Our approach is based on the projection of one or a few molecules of interest and the expansion around their neighborhood and allows for the exploration of large chemical libraries without the need to create an all encompassing overview of the whole library. We describe the requirements we collected during our collaboration with biologists and chemists, the design rationale behind the tool, and two case studies on different datasets. The described integration (HiTSEE KNIME) into the KNIME platform allows additional flexibility in adopting our approach to a wide range of different biochemical problems and enables other research groups to use HiTSEE
    corecore