6 research outputs found

    Attempt to Polymerize <i>Cucurbita pepo</i> Oil by Temperature Action and Photolysis

    No full text
    International audienceThe study of the polymerization of a vegetable oil has a double interest; industrial but especially food. Industrial because polymers based on vegetable oil are in line with sustainable development; food because an oil which polymerizes easily is a danger for human consumption. Three situations of Cucurbita pepo oil polymerization are carried out in the course of time, the factor retained being temperature. A monitoring of the evolution of the enthalpy by temperature variation by the DSC method allows to report the polymerization of this oil. It happens that a polymerization is triggered in the oil matrix but it seems to fade very quickly, this behavior is general because after sweeping a temperature range of 80°C; 100°C and 150°C adding different amounts of Irgacure: the Cucurbita pepo oil resists polymerization through its antioxidant compounds. However, a photolysis of this oil carried out over 8 days shows that it effectively polymerizes after 144 hours, which proves the great capacity of antioxidant compounds to protect this oil. The analyses carried out at 25°C aim to simulate the behavior of the oil at room temperature. The results reveal good resistance to both thermochemical and photochemical polymerization, which opens up great prospects for its development in the food industry and in nutrition

    Insecticidal activities of bark, leaf and seed extracts of Zanthoxylum heitzii against the African malaria vector Anopheles gambiae

    Get PDF
    The olon tree, Zanthoxylum heitzii (syn. Fagara heitzii) is commonly found in the central-west African forests. In the Republic of Congo (Congo-Brazzaville) its bark is anecdotally reported to provide human protection against fleas. Here we assess the insecticidal activities of Z. heitzii stem bark, seed and leaf extracts against Anopheles gambiae s.s, the main malaria vector in Africa. Extracts were obtained by Accelerated Solvent Extraction (ASE) using solvents of different polarity and by classical Soxhlet extraction using hexane as solvent. The insecticidal effects of the crude extracts were evaluated using topical applications of insecticides on mosquitoes of a susceptible reference strain (Kisumu [Kis]), a strain homozygous for the L1014F kdr mutation (kdrKis), and a strain homozygous for the G119S Ace1R allele (AcerKis). The insecticidal activities were measured using LD50 and LD95 and active extracts were characterized by NMR spectroscopy and HPLC chromatography. Results show that the ASE hexane stem bark extract was the most effective compound against An. gambiae (LD50 = 102 ng/mg female), but was not as effective as common synthetic insecticides. Overall, there was no significant difference between the responses of the three mosquito strains to Z. heitzii extracts, indicating no cross resistance with conventional pesticides

    Identification of chemical constituents of Zanthoxylum heitzii stem bark and their insecticidal activity against the malaria mosquito Anopheles gambiae

    Get PDF
    Background Zanthoxylum heitzii bark extracts have insecticidal properties and have been reported to be used against malaria in Western Africa. Previously, it has been shown that a hexane extract of the bark is toxic to adult females of the mosquito Anopheles gambiae, a malaria vector. As part of our project on the control of malaria vectors using plant extracts, the phytochemistry of Z. heitzii bark hexane extract has been investigated with the aim to identify the major components with adulticidal and larvicidal effects on An. gambiae. Methods Z. heitzii stem bark was extracted with hexane, and the extract was fractionated to isolate major components from the bark, identified by NMR spectroscopy. Isolated compounds were tested for toxicity towards adult female An. gambiae mosquitoes and for larvicidal effects towards An. gambiae. Results The alkaloid dihydronitidine, the sesquiterpenoid caryophyllene oxide, the amide pellitorine and the lignan sesamin were identified as the major constituents in Z. heitzii bark. Pellitorine was toxic to both adult insects (LD50 50 ng/mg insect) and larvae (LD50 13 μg/ml). None of the other compounds were toxic to adults, but caryophyllene oxide and sesamin exhibited moderate larvicidal effects (LD50 > 150 μg/ml). A mixture of the four compounds in the same ratio as in the hexane extract showed higher toxicity (LD50 34 ng/mg insect) towards adult insects than the pure compounds. Conclusion The toxicity of Z. heitzii bark hexane extract to An. gambiae is mostly due to pellitorine, although interactions between pellitorine and other, inactive constituents may enhance the activity of the extract
    corecore