6,113 research outputs found

    Involutive constrained systems and Hamilton-Jacobi formalism

    Full text link
    In this paper, we study singular systems with complete sets of involutive constraints. The aim is to establish, within the Hamilton-Jacobi theory, the relationship between the Frobenius' theorem, the infinitesimal canonical transformations generated by constraints in involution with the Poisson brackets, and the lagrangian point (gauge) transformations of physical systems

    Hamilton-Jacobi formalism for Linearized Gravity

    Get PDF
    In this work we study the theory of linearized gravity via the Hamilton-Jacobi formalism. We make a brief review of this theory and its Lagrangian description, as well as a review of the Hamilton-Jacobi approach for singular systems. Then we apply this formalism to analyze the constraint structure of the linearized gravity in instant and front-form dynamics.Comment: To be published in Classical and Quantum Gravit

    The Kovacs effect in model glasses

    Full text link
    We discuss the `memory effect' discovered in the 60's by Kovacs in temperature shift experiments on glassy polymers, where the volume (or energy) displays a non monotonous time behaviour. This effect is generic and is observed on a variety of different glassy systems (including granular materials). The aim of this paper is to discuss whether some microscopic information can be extracted from a quantitative analysis of the `Kovacs hump'. We study analytically two families of theoretical models: domain growth and traps, for which detailed predictions of the shape of the hump can be obtained. Qualitatively, the Kovacs effect reflects the heterogeneity of the system: its description requires to deal not only with averages but with a full probability distribution (of domain sizes or of relaxation times). We end by some suggestions for a quantitative analysis of experimental results.Comment: 17 pages, 6 figures; revised versio

    Trap models with slowly decorrelating observables

    Full text link
    We study the correlation and response dynamics of trap models of glassy dynamics, considering observables that only partially decorrelate with every jump. This is inspired by recent work on a microscopic realization of such models, which found strikingly simple linear out-of-equilibrium fluctuation-dissipation relations in the limit of slow decorrelation. For the Barrat-Mezard model with its entropic barriers we obtain exact results at zero temperature TT for arbitrary decorrelation factor κ\kappa. These are then extended to nonzero TT, where the qualitative scaling behaviour and all scaling exponents can still be found analytically. Unexpectedly, the choice of transition rates (Glauber versus Metropolis) affects not just prefactors but also some exponents. In the limit of slow decorrelation even complete scaling functions are accessible in closed form. The results show that slowly decorrelating observables detect persistently slow out-of-equilibrium dynamics, as opposed to intermittent behaviour punctuated by excursions into fast, effectively equilibrated states.Comment: 29 pages, IOP styl

    Cosmological parameters from strong gravitational lensing and stellar dynamics in elliptical galaxies

    Full text link
    We show how the combination of observations related to strong gravitational lensing and stellar dynamics in ellipticals offers a new way to measure the cosmological matter and dark-energy density parameters. A gravitational lensing estimate of the mass enclosed inside the Einstein circle can be obtained by measuring the Einstein angle, once the critical density of the system is known. A model-dependent dynamical estimate of this mass can also be obtained by measuring the central velocity dispersion of the stellar component. By assuming the well-tested homologous 1/r^{2} profile for the total density distribution in the lens elliptical galaxies, these two mass measurements can be properly compared. Thus, a relation between the Einstein angle and the central stellar velocity dispersion is derived, and the cosmological matter and the dark-energy density parameters can be estimated from this. We determined the accuracy of the cosmological parameter estimates by means of simulations that include realistic measurement uncertainties on the relevant quantities. Interestingly, the expected constraints on the cosmological parameter plane are complementary to those coming from other observational techniques. Then, we applied the method to the data sets of the Sloan Lens ACS and the Lenses Structure and Dynamics Surveys, and showed that the concordance value between 0.7 and 0.8 for the dark-energy density parameter is included in our 99% confidence regions. The small number of lenses available to date prevents us from precisely determining the cosmological parameters, but it still proves the feasibility of the method. When applied to samples made of hundreds of lenses that are expected to become available from forthcoming surveys, this technique will be an important tool for measuring the geometry of the Universe.Comment: 11 pages, 9 figures, accepted by Astronomy & Astrophysic

    Active Brownian particles with velocity-alignment and active fluctuations

    Full text link
    We consider a model of active Brownian particles with velocity-alignment in two spatial dimensions with passive and active fluctuations. Hereby, active fluctuations refers to purely non-equilibrium stochastic forces correlated with the heading of an individual active particle. In the simplest case studied here, they are assumed as independent stochastic forces parallel (speed noise) and perpendicular (angular noise) to the velocity of the particle. On the other hand, passive fluctuations are defined by a noise vector independent of the direction of motion of a particle, and may account for example for thermal fluctuations. We derive a macroscopic description of the active Brownian particle gas with velocity-alignment interaction. Hereby, we start from the individual based description in terms of stochastic differential equations (Langevin equations) and derive equations of motion for the coarse grained kinetic variables (density, velocity and temperature) via a moment expansion of the corresponding probability density function. We focus here in particular on the different impact of active and passive fluctuations on the onset of collective motion and show how active fluctuations in the active Brownian dynamics can change the phase-transition behaviour of the system. In particular, we show that active angular fluctuation lead to an earlier breakdown of collective motion and to emergence of a new bistable regime in the mean-field case.Comment: 5 figures, 22 pages, submitted to New Journal of Physic

    The canonical structure of Podolsky's generalized electrodynamics on the Null-Plane

    Get PDF
    In this work we will develop the canonical structure of Podolsky's generalized electrodynamics on the null-plane. This theory has second-order derivatives in the Lagrangian function and requires a closer study for the definition of the momenta and canonical Hamiltonian of the system. On the null-plane the field equations also demand a different analysis of the initial-boundary value problem and proper conditions must be chosen on the null-planes. We will show that the constraint structure, based on Dirac formalism, presents a set of second-class constraints, which are exclusive of the analysis on the null-plane, and an expected set of first-class constraints that are generators of a U(1) group of gauge transformations. An inspection on the field equations will lead us to the generalized radiation gauge on the null-plane, and Dirac Brackets will be introduced considering the problem of uniqueness of these brackets under the chosen initial-boundary condition of the theory

    Linear and non linear response in the aging regime of the 1D trap model

    Full text link
    We investigate the behaviour of the response function in the one dimensional trap model using scaling arguments that we confirm by numerical simulations. We study the average position of the random walk at time tw+t given that a small bias h is applied at time tw. Several scaling regimes are found, depending on the relative values of t, tw and h. Comparison with the diffusive motion in the absence of bias allows us to show that the fluctuation dissipation relation is, in this case, valid even in the aging regime.Comment: 5 pages, 3 figures, 3 references adde

    Cluster membership probabilities from proper motions and multiwavelength photometric catalogues: I. Method and application to the Pleiades cluster

    Full text link
    We present a new technique designed to take full advantage of the high dimensionality (photometric, astrometric, temporal) of the DANCe survey to derive self-consistent and robust membership probabilities of the Pleiades cluster. We aim at developing a methodology to infer membership probabilities to the Pleiades cluster from the DANCe multidimensional astro-photometric data set in a consistent way throughout the entire derivation. The determination of the membership probabilities has to be applicable to censored data and must incorporate the measurement uncertainties into the inference procedure. We use Bayes' theorem and a curvilinear forward model for the likelihood of the measurements of cluster members in the colour-magnitude space, to infer posterior membership probabilities. The distribution of the cluster members proper motions and the distribution of contaminants in the full multidimensional astro-photometric space is modelled with a mixture-of-Gaussians likelihood. We analyse several representation spaces composed of the proper motions plus a subset of the available magnitudes and colour indices. We select two prominent representation spaces composed of variables selected using feature relevance determination techniques based in Random Forests, and analyse the resulting samples of high probability candidates. We consistently find lists of high probability (p > 0.9975) candidates with \approx 1000 sources, 4 to 5 times more than obtained in the most recent astro-photometric studies of the cluster. The methodology presented here is ready for application in data sets that include more dimensions, such as radial and/or rotational velocities, spectral indices and variability.Comment: 14 pages, 4 figures, accepted by A&
    corecore