416 research outputs found
Expression and trans-specific polymorphism of self-incompatibility RNases in Coffea (Rubiaceae)
Self-incompatibility (SI) is widespread in the angiosperms, but identifying the biochemical components of SI mechanisms has proven to be difficult in most lineages. Coffea (coffee; Rubiaceae) is a genus of old-world tropical understory trees in which the vast majority of diploid species utilize a mechanism of gametophytic self-incompatibility (GSI). The S-RNase GSI system was one of the first SI mechanisms to be biochemically characterized, and likely represents the ancestral Eudicot condition as evidenced by its functional characterization in both asterid (Solanaceae, Plantaginaceae) and rosid (Rosaceae) lineages. The S-RNase GSI mechanism employs the activity of class III RNase T2 proteins to terminate the growth of "self" pollen tubes. Here, we investigate the mechanism of Coffea GSI and specifically examine the potential for homology to S-RNase GSI by sequencing class III RNase T2 genes in populations of 14 African and Madagascan Coffea species and the closely related self-compatible species Psilanthus ebracteolatus. Phylogenetic analyses of these sequences aligned to a diverse sample of plant RNase T2 genes show that the Coffea genome contains at least three class III RNase T2 genes. Patterns of tissue-specific gene expression identify one of these RNase T2 genes as the putative Coffea S-RNase gene. We show that populations of SI Coffea are remarkably polymorphic for putative S-RNase alleles, and exhibit a persistent pattern of trans-specific polymorphism characteristic of all S-RNase genes previously isolated from GSI Eudicot lineages. We thus conclude that Coffea GSI is most likely homologous to the classic Eudicot S-RNase system, which was retained since the divergence of the Rubiaceae lineage from an ancient SI Eudicot ancestor, nearly 90 million years ago.United States National Science Foundation [0849186]; Society of Systematic Biologists; American Society of Plant Taxonomists; Duke University Graduate Schoolinfo:eu-repo/semantics/publishedVersio
Role of Esrrg in the Fibrate-Mediated Regulation of Lipid Metabolism Genes in Human ApoA-I Transgenic Mice
We have used a new ApoA-I transgenic mouse model to identify by global gene expression profiling, candidate genes that affect lipid and lipoprotein metabolism in response to fenofibrate treatment. Multilevel bioinformatical analysis and stringent selection criteria (2-fold change, 0% false discovery rate) identified 267 significantly changed genes involved in several molecular pathways. The fenofibrate-treated group did not have significantly altered levels of hepatic human APOA-I mRNA and plasma ApoA-I compared with the control group. However, the treatment increased cholesterol levels to 1.95-fold mainly due to the increase in high-density lipoprotein (HDL) cholesterol. The observed changes in HDL are associated with the upregulation of genes involved in phospholipid biosynthesis and lipid hydrolysis, as well as phospholipid transfer protein. Significant upregulation was observed in genes involved in fatty acid transport and β-oxidation, but not in those of fatty acid and cholesterol biosynthesis, Krebs cycle and gluconeogenesis. Fenofibrate changed significantly the expression of seven transcription factors. The estrogen receptor-related gamma gene was upregulated 2.36-fold and had a significant positive correlation with genes of lipid and lipoprotein metabolism and mitochondrial functions, indicating an important role of this orphan receptor in mediating the fenofibrate-induced activation of a specific subset of its target genes.National Institutes of Health (HL48739 and HL68216); European Union (LSHM-CT-2006-0376331, LSHG-CT-2006-037277); the Biomedical Research Foundation of the Academy of Athens; the Hellenic Cardiological Society; the John F Kostopoulos Foundatio
Opposite regulation of human versus mouse apolipoprotein A-I by fibrates in human apolipoprotein A-I transgenic mice
The regulation of liver apolipoprotein (apo) A-I gene expression by fibrates was studied in human apo A-I transgenic mice containing a human genomic DNA fragment driving apo A-I expression in liver. Treatment with fenofibrate (0.5% wt/wt) for 7 d increased plasma human apo A-I levels up to 750% and HDL-cholesterol levels up to 200% with a shift to larger particles. The increase in human apo A-I plasma levels was time and dose dependent and was already evident after 3 d at the highest dose (0.5% wt/wt) of fenofibrate. In contrast, plasma mouse apo A-I concentration was decreased after fenofibrate in nontransgenic mice. The increase in plasma human apo A-I levels after fenofibrate treatment was associated with a 97% increase in hepatic human apo A-I mRNA, whereas mouse apo A-I mRNA levels decreased to 51%. In nontransgenic mice, a similar down-regulation of hepatic apo A-I mRNA levels was observed. Nuclear run-on experiments demonstrated that the increase in human apo A-I and the decrease in mouse apo A-I gene expression after fenofibrate occurred at the transcriptional level. Since part of the effects of fibrates are mediated through the nuclear receptor PPAR (peroxisome proliferator-activated receptor), the expression of the acyl CoA oxidase (ACO) gene was measured as a control of PPAR activation. Both in transgenic and nontransgenic mice, fenofibrate induced ACO mRNA levels up to sixfold. When transgenic mice were treated with gemfibrozil (0.5% wt/wt) plasma human apo A-I and HDL-cholesterol levels increased 32 and 73%, respectively, above control levels. The weaker effect of this compound on human apo A-I and HDL-cholesterol levels correlated with a less pronounced impact on ACO mRNA levels (a threefold increase) suggesting that the level of induction of human apo A-I gene is related to the PPAR activating potency of the fibrate used. Treatment of human primary hepatocytes with fenofibric acid (500 microM) provoked an 83 and 50% increase in apo A-I secretion and mRNA levels, respectively, supporting that a direct action of fibrates on liver human apo A-I production leads to the observed increase in plasma apo A4 and HDL-cholesterol
Sperm design and variation in the New World blackbirds (Icteridae)
Post-copulatory sexual selection (PCSS) is thought to be one of the evolutionary forces responsible for the rapid and divergent evolution of sperm design. However, whereas in some taxa particular sperm traits are positively associated with PCSS, in other taxa, these relationships are negative, and the causes of these different patterns across taxa are poorly understood. In a comparative study using New World blackbirds (Icteridae), we tested whether sperm design was influenced by the level of PCSS and found significant positive associations with the level of PCSS for all sperm components but head length. Additionally, whereas the absolute length of sperm components increased, their variation declined with the intensity of PCSS, indicating stabilizing selection around an optimal sperm design. Given the diversity of, and strong selection on, sperm design, it seems likely that sperm phenotype may influence sperm velocity within species. However, in contrast to other recent studies of passerine birds, but consistent with several other studies, we found no significant link between sperm design and velocity, using four different species that vary both in sperm design and PCSS. Potential reasons for this discrepancy between studies are discussed
A Portuguese East Indiaman from the 1502-1503 Fleet of Vasco da Gama off Al Hallaniyah Island, Oman: An interim report
Two Portuguese naus from Vasco da Gama's second voyage to India, left behind to disrupt maritime trade between India and the Red Sea, were wrecked in May 1503 off the north-eastern coast of Al Hallaniyah Island, Oman. The ships, Esmeralda and São Pedro, had been commanded by da Gama's maternal uncles, Vicente and Brás Sodré, respectively. A detailed study and scientific analysis of an artefact assemblage recovered during archaeological excavations conducted in Al Hallaniyah in 2013 and 2014 confirms the location of an early 16th-century Portuguese wreck-site, initially discovered in 1998. Esmeralda is proposed as the probable source of the remaining, un-salved wreckage
Investigating the representation of heatwaves from an ensemble of km-scale regional climate simulations within CORDEX-FPS convection
Heatwaves (HWs) are high-impact phenomena stressing both societies and ecosystems. Their intensity and frequency are expected to increase in a warmer climate over many regions of the world. While these impacts can be wide-ranging, they are potentially influenced by local to regional features such as topography, land cover, and urbanization. Here, we leverage recent advances in the very high-resolution modelling required to elucidate the impacts of heatwaves at these fine scales. Further, we aim to understand how the new generation of km-scale regional climate models (RCMs) modulates the representation of heatwaves over a well-known climate change hot spot. We analyze an ensemble of 15 convection-permitting regional climate model (CPRCM, ~ 2–4 km grid spacing) simulations and their driving, convection-parameterized regional climate model (RCM, ~ 12–15 km grid spacing) simulations from the CORDEX Flagship Pilot Study on Convection. The focus is on the evaluation experiments (2000–2009) and three subdomains with a range of climatic characteristics. During HWs, and generally in the summer season, CPRCMs exhibit warmer and drier conditions than their driving RCMs. Higher maximum temperatures arise due to an altered heat flux partitioning, with daily peaks up to ~ 150 W/m larger latent heat in RCMs compared to the CPRCMs. This is driven by a 5–25% lower soil moisture content in the CPRCMs, which is in turn related to longer dry spell length (up to double). It is challenging to ascertain whether these differences represent an improvement. However, a point-scale distribution-based maximum temperature evaluation, suggests that this CPRCMs warmer/drier tendency is likely more realistic compared to the RCMs, with ~ 70% of reference sites indicating an added value compared to the driving RCMs, increasing to 95% when only the distribution right tail is considered. Conversely, a CPRCMs slight detrimental effect is found according to the upscaled grid-to-grid approach over flat areas. Certainly, CPRCMs enhance dry conditions, with knock-on implications for summer season temperature overestimation. Whether this improved physical representation of HWs also has implications for future changes is under investigation
A horizon scan exercise for aquatic invasive alien species in Iberian inland waters
As the number of introduced species keeps increasing unabatedly, identifying and prioritising current and potential Invasive Alien Species (IAS) has become essential to manage them. Horizon Scanning (HS), defined as an exploration of potential threats, is considered a fundamental component of IAS management. By combining scientific knowledge on taxa with expert opinion, we identified the most relevant aquatic IAS in the Iberian Peninsula, i.e., those with the greatest geographic extent (or probability of introduction), severe ecological, economic and human health impacts, greatest difficulty and acceptability of management. We highlighted the 126 most relevant IAS already present in Iberian inland waters (i.e., Concern list) and 89 with a high probability of being introduced in the near future (i.e., Alert list), of which 24 and 10 IAS, respectively, were considered as a management priority after receiving the highest scores in the expert assessment (i.e., top-ranked IAS). In both lists, aquatic IAS belonging to the four thematic groups (plants, freshwater invertebrates, estuarine invertebrates, and vertebrates) were identified as having been introduced through various pathways from different regions of the world and classified according to their main functional feeding groups. Also, the latest update of the list of IAS of Union concern pursuant to Regulation (EU) No 1143/2014 includes only 12 top-ranked IAS identified for the Iberian Peninsula, while the national lists incorporate the vast majority of them. This fact underlines the great importance of taxa prioritisation exercises at biogeographical scales as a step prior to risk analyses and their inclusion in national lists. This HS provides a robust assessment and a cost-effective strategy for decision-makers and stakeholders to prioritise the use of limited resources for IAS prevention and management. Although applied at a transnational level in a European biodiversity hotspot, this approach is designed for potential application at any geographical or administrative scale, including the continental one
The first multi-model ensemble of regional climate simulations at kilometer-scale resolution, part I: evaluation of precipitation
Here we present the first multi-model ensemble of regional climate simulations at kilometer-scale horizontal grid spacing over a decade long period. A total of 23 simulations run with a horizontal grid spacing of ∼3 km, driven by ERA-Interim reanalysis, and performed by 22 European research groups are analysed. Six different regional climate models (RCMs) are represented in the ensemble. The simulations are compared against available high-resolution precipitation observations and coarse resolution (∼ 12 km) RCMs with parameterized convection. The model simulations and observations are compared with respect to mean precipitation, precipitation intensity and frequency, and heavy precipitation on daily and hourly timescales in different seasons. The results show that kilometer-scale models produce a more realistic representation of precipitation than the coarse resolution RCMs. The most significant improvements are found for heavy precipitation and precipitation frequency on both daily and hourly time scales in the summer season. In general, kilometer-scale models tend to produce more intense precipitation and reduced wet-hour frequency compared to coarse resolution models. On average, the multi-model mean shows a reduction of bias from ∼ −40% at 12 km to ∼ −3% at 3 km for heavy hourly precipitation in summer. Furthermore, the uncertainty ranges i.e. the variability between the models for wet hour frequency is reduced by half with the use of kilometer-scale models. Although differences between the model simulations at the kilometer-scale and observations still exist, it is evident that these simulations are superior to the coarse-resolution RCM simulations in the representing precipitation in the present-day climate, and thus offer a promising way forward for investigations of climate and climate change at local to regional scales
- …