4,725 research outputs found

    Efficient mining of discriminative molecular fragments

    Get PDF
    Frequent pattern discovery in structured data is receiving an increasing attention in many application areas of sciences. However, the computational complexity and the large amount of data to be explored often make the sequential algorithms unsuitable. In this context high performance distributed computing becomes a very interesting and promising approach. In this paper we present a parallel formulation of the frequent subgraph mining problem to discover interesting patterns in molecular compounds. The application is characterized by a highly irregular tree-structured computation. No estimation is available for task workloads, which show a power-law distribution in a wide range. The proposed approach allows dynamic resource aggregation and provides fault and latency tolerance. These features make the distributed application suitable for multi-domain heterogeneous environments, such as computational Grids. The distributed application has been evaluated on the well known National Cancer Institute’s HIV-screening dataset

    Quantum Brownian motion at strong dissipation probed by superconducting tunnel junctions

    Full text link
    We have studied the temporal evolution of a quantum system subjected to strong dissipation at ultra-low temperatures where the system-bath interaction represents the leading energy scale. In this regime, theory predicts the time evolution of the system to follow a generalization of the classical Smoluchowski description, the quantum Smoluchowski equation, thus, exhibiting quantum Brownian motion characteristics. For this purpose, we have investigated the phase dynamics of a superconducting tunnel junction in the presence of high damping. We performed current-biased measurements on the small-capacitance Josephson junction of a scanning tunneling microscope placed in a low impedance environment at milli-Kelvin temperatures. We can describe our experimental findings by a quantum diffusion model with high accuracy in agreement with theoretical predications based on the quantum Smoluchowski equation. In this way we experimentally demonstrate that quantum systems subjected to strong dissipation follow quasi-classical dynamics with significant quantum effects as the leading corrections.Comment: 5 pages, 4 figure

    Structure formation in sugar containing pectin gels – Influence of tartaric acid content (pH) and cooling rate on the gelation of high-methoxylated pectin

    Get PDF
    The aim of the study was the application of a recently published method, using structuring parameters calculated from dG′/dt, for the characterisation of the pectin sugar acid gelation process. The influence of cooling rate and pH on structure formation of HM pectin gels containing 65 wt.% sucrose were investigated. The results show that the structure formation process as well as the properties of the final gels strongly depended on both parameters. With increasing cooling rates from 0.5 to 1.0 K/min the initial structuring temperature slightly decreased and the maximum structuring velocity increased. The lower the cooling rates, the firmer and more elastic were the final gels. With increasing acid content (decreasing pH from 2.5–2.0) the initial structuring temperatures were nearly constant. The final gel properties varied visibly but not systematically. Gels with the lowest and highest pH were less elastic and weaker compared to those with medium acid concentrations

    Off-nadir antenna bias correction using Amazon rain sigma(0) data

    Get PDF
    The radar response from the Amazon rain forest was studied to determine the suitability of this region for use as a standard target to calibrate a scatterometer like that proposed for the National Oceanic Satellite System (NOSS). Backscattering observations made by the SEASAT Scatterometer System (SASS) showed the Amazon rain forest to be a homogeneous, azimuthally-isotropic, radar target which was insensitive to polarization. The variation with angle of incidence was adequately modeled as scattering coefficient (dB) = a theta b with typical values for the incidence-angle coefficient from 0.07 to 0.15 dB/deg. A small diurnal effect occurs, with measurements at sunrise being 0.5 dB to 1 dB higher than the rest of the day. Maximum-likelihood estimation algorithms presented here permit determination of relative bias and true pointing angle for each beam. Specific implementation of these algorithms for the proposed NOSS scatterometer system is also discussed

    Minimal qubit tomography

    Full text link
    We present, and analyze thoroughly, a highly symmetric and efficient scheme for the determination of a single-qubit state, such as the polarization properties of photons emitted by a single-photon source. In our scheme there are only four measured probabilities, just enough for the determination of the three parameters that specify the qubit state, whereas the standard procedure would measure six probabilities.Comment: 14 pages, 10 figures; final versio

    Development of optical diaphragm deflection sensors

    Get PDF
    The objective of this project was to develop high-temperature pressure sensors using non-metallic components and optical sensing methods. The sensors are to operate over a temperature range from room temperature approx. 20C to 540C, to respond to internal pressure up to 690 kPa, to respond to external pressure up to 690 kPa, and to withstand external overpressure of 2070 kPa. Project tasks include evaluating sensing techniques and sensor systems. These efforts include materials and sensing method selection, sensor design, sensor fabrication, and sensor testing. Sensors are tested as a function of temperature, pressure, overpressure, and vibration. The project results show that high-temperature pressure sensors based on glass components and optical sensing methods are feasible. The microbend optical diaphragm deflection sensor exhibits the required sensitivity and stability for use as a pressure sensor with temperature compensation. for the microbend sensor, the 95% confidence level deviation of input pressure from the pressure calculated from the overall temperature-compensated calibration equation is 3.7% of full scale. The limitations of the sensors evaluated are primarily due to the restricted temperature range of suitable commercially available optical fibers and the problems associated with glass-to-metal pressure sealing over the entire testing temperature range

    07181 Abstracts Collection -- Parallel Universes and Local Patterns

    Get PDF
    From 1 May 2007 to 4 May 2007 the Dagstuhl Seminar 07181 ``Parallel Universes and Local Patterns\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Codes for Key Generation in Quantum Cryptography

    Full text link
    As an alternative to the usual key generation by two-way communication in schemes for quantum cryptography, we consider codes for key generation by one-way communication. We study codes that could be applied to the raw key sequences that are ideally obtained in recently proposed scenarios for quantum key distribution, which can be regarded as communication through symmetric four-letter channels.Comment: IJQI format, 13 pages, 1 tabl
    corecore