25 research outputs found

    Next-generation plasmids for transgenesis in zebrafish and beyond

    Get PDF
    Transgenesis is an essential technique for any genetic model. Tol2-based transgenesis paired with Gateway-compatible vector collections has transformed zebrafish transgenesis with an accessible, modular system. Here, we established several next-generation transgenesis tools for zebrafish and other species to expand and enhance transgenic applications. To facilitate gene-regulatory element testing, we generated Gateway middle entry vectors harboring the small mouse beta-globin minimal promoter coupled to several fluorophores, CreERT2, and Gal4. To extend the color spectrum for transgenic applications, we established middle entry vectors encoding the bright, blue-fluorescent protein mCerulean and mApple as an alternative red fluorophore. We present a series of p2A peptide-based 3' vectors with different fluorophores and subcellular localizations to co-label cells expressing proteins of interest. Lastly, we established Tol2 destination vectors carrying the zebrafish exorh promoter driving different fluorophores as a pineal gland-specific transgenesis marker active prior to hatching and through adulthood. exorh-based reporters and transgenesis markers also drive specific pineal gland expression in the eye-less cavefish (Astyanax). Together, our vectors provide versatile reagents for transgenesis applications in zebrafish, cavefish, and other models

    Next-generation plasmids for transgenesis in zebrafish and beyond

    Get PDF
    Transgenesis is an essential technique for any genetic model. Tol2-based transgenesis paired with Gateway-compatible vector collections has transformed zebrafish transgenesis with an accessible, modular system. Here, we established several next-generation transgenesis tools for zebrafish and other species to expand and enhance transgenic applications. To facilitate gene-regulatory element testing, we generated Gateway middle entry vectors harboring the small mouse betaglobin minimal promoter coupled to several fluorophores, CreERT2, and Gal4. To extend the color spectrum for transgenic applications, we established middle entry vectors encoding the bright, blue-fluorescent protein Cerulean and mApple as an alternative red fluorophore. We present a series of p2A peptide-based 3' vectors with different fluorophores and subcellular localizations to co-label cells expressing proteins of interest. Lastly, we established Tol2 destination vectors carrying the zebrafish exorh promoter driving different fluorophores as a pineal gland-specific transgenesis marker active prior to hatching and through adulthood. exorh-based reporters and transgenesis markers also drive specific pineal gland expression in the eye-less cavefish (Astyanax). Together, our vectors provide versatile reagents for transgenesis applications in zebrafish, cavefish, and other models

    Radical functionalization of enamides : Iron catalysis or application of xanthates chemistry

    No full text
    L’objectif du projet de thĂšse est d’étudier l’addition d’espĂšces radicalaires sur des motifs de type Ă©namide non aromatique pour accĂ©der Ă  une diversitĂ© molĂ©culaire de dĂ©rivĂ©s azotĂ©s cycliques et acycliques en un minimum d’étapes via des rĂ©actions rĂ©gio- et diastĂ©rĂ©osĂ©lectives utilisant des conditions Ă©co-compatibles.Dans un premier temps, des Ă©namides non aromatiques originaux possĂ©dant divers groupements fonctionnels ont Ă©tĂ© prĂ©parĂ©s. L’oxyazidation originale rĂ©gio- et diastĂ©rĂ©osĂ©lective d’énamides a ensuite Ă©tĂ© dĂ©veloppĂ©e en utilisant une catalyse au fer (II) en prĂ©sence de dĂ©rivĂ©s azidobenziodoxolones (ABX) originaux. Cette mĂ©thode permet notamment l’accĂšs Ă  des pipĂ©ridines α-azido -esters de configuration trans que nous avons valorisĂ© pour accĂ©der Ă  des polycycles azotĂ©s originaux.Par la suite, une approche synthĂ©tique impliquant une catalyse au fer (II) ou du fer mĂ©tallique pour fonctionnaliser la position C3 d’énamides a Ă©tĂ© dĂ©veloppĂ©e Ă  partir de plusieurs α-halogĂ©nocarbonyles selon un processus radicalaire. Enfin, la chimie radicalaire des xanthates a Ă©tĂ© avantageusement appliquĂ©e pour rĂ©aliser l’alkylation de cette position. Des conditions permettant d’effectuer une difonctionnalisation ont Ă©galement Ă©tĂ© mises en oeuvreThe aim of the thesis is to study the addition of radical species on non-aromatic enamide scaffolds in order to access high molecular diversity of cyclic and acyclic nitrogen-containing compounds in a restricted number of steps via sustainable eco-friendly regio- and diastereoselective reactions.Firstly, non-aromatic enamides bearing different functional groups have been synthesized. Then a regio- and diastereoselective iron-catalyzed oxyazidation of enamides was developed in the presence of novel azidobenziodoxolones (ABX) derivatives under mild reaction conditions. In addition, the versatility of the trans α-azido ÎČ-esters piperidines was highlighted by the synthesis of various original nitrogen-containing polycycles.Subsequently, C3 alkylation of enamides with α-halogenocarbonyles. was carried out through an iron (II)-catalysis or a metallic iron-mediated process.Finally, radical xanthate chemistry was applied to achieve the metal-free alkylation of the C3 position of enamides or the difunctionalization of enamides in the presence of a nucleophil

    Fonctionnalisation d’énamides par voie radicalaire : Catalyse au fer ou application de la chimie des xanthates

    No full text
    The aim of the thesis is to study the addition of radical species on non-aromatic enamide scaffolds in order to access high molecular diversity of cyclic and acyclic nitrogen-containing compounds in a restricted number of steps via sustainable eco-friendly regio- and diastereoselective reactions.Firstly, non-aromatic enamides bearing different functional groups have been synthesized. Then a regio- and diastereoselective iron-catalyzed oxyazidation of enamides was developed in the presence of novel azidobenziodoxolones (ABX) derivatives under mild reaction conditions. In addition, the versatility of the trans α-azido ÎČ-esters piperidines was highlighted by the synthesis of various original nitrogen-containing polycycles.Subsequently, C3 alkylation of enamides with α-halogenocarbonyles. was carried out through an iron (II)-catalysis or a metallic iron-mediated process.Finally, radical xanthate chemistry was applied to achieve the metal-free alkylation of the C3 position of enamides or the difunctionalization of enamides in the presence of a nucleophileL’objectif du projet de thĂšse est d’étudier l’addition d’espĂšces radicalaires sur des motifs de type Ă©namide non aromatique pour accĂ©der Ă  une diversitĂ© molĂ©culaire de dĂ©rivĂ©s azotĂ©s cycliques et acycliques en un minimum d’étapes via des rĂ©actions rĂ©gio- et diastĂ©rĂ©osĂ©lectives utilisant des conditions Ă©co-compatibles.Dans un premier temps, des Ă©namides non aromatiques originaux possĂ©dant divers groupements fonctionnels ont Ă©tĂ© prĂ©parĂ©s. L’oxyazidation originale rĂ©gio- et diastĂ©rĂ©osĂ©lective d’énamides a ensuite Ă©tĂ© dĂ©veloppĂ©e en utilisant une catalyse au fer (II) en prĂ©sence de dĂ©rivĂ©s azidobenziodoxolones (ABX) originaux. Cette mĂ©thode permet notamment l’accĂšs Ă  des pipĂ©ridines α-azido -esters de configuration trans que nous avons valorisĂ© pour accĂ©der Ă  des polycycles azotĂ©s originaux.Par la suite, une approche synthĂ©tique impliquant une catalyse au fer (II) ou du fer mĂ©tallique pour fonctionnaliser la position C3 d’énamides a Ă©tĂ© dĂ©veloppĂ©e Ă  partir de plusieurs α-halogĂ©nocarbonyles selon un processus radicalaire. Enfin, la chimie radicalaire des xanthates a Ă©tĂ© avantageusement appliquĂ©e pour rĂ©aliser l’alkylation de cette position. Des conditions permettant d’effectuer une difonctionnalisation ont Ă©galement Ă©tĂ© mises en oeuvr

    Caractérisation biochimique et moléculaire du déterminant du sexe chez les salmonidés

    No full text
    Sexual development is a fundamental and versatile process that shapes animal morphology, physiology and behavior. The underlying developmental process is composed of the sex determination and the sex differentiation. The initial triggers are often genetics called sex determining genes. To date, among the known sex determining genes, three gene families namely sox, dmrt and TGF-ß factors govern this developmental program. As exception to this rule, sdY “sexually dimorphic on the Y” does not belong to one of these families as it comes from the duplication / evolution of an ancestor gene related to immunity, i.e., the interferon related factor 9, irf9.sdY is the master sex determining gene in salmonids, a group of fishes that include species such as rainbow trout and Atlantic salmon. The present study was aimed to firstly characterize the features of SdY protein. Results indicate that SdY is predominantly localized in the cytoplasm, composed of a ß-sandwich core surrounded by three a-helices as well specific characteristics conferring a putative protein-protein interaction site. Secondly, the study was aimed to understand how SdY could trigger testicular differentiation. Altogether results propose that SdY would trigger testicular differentiation in salmonids by interacting with a prominent female factor.Le dĂ©veloppement du sexe est un processus fondamental et versatile qui forme la morphologie, la physiologie et le comportement des animaux. Le processus de dĂ©veloppement sous-jacent est composĂ© de la dĂ©termination et de la diffĂ©rentiation du sexe. Les mĂ©canismes de dĂ©termination du sexe sont souvent gĂ©nĂ©tiques et nommĂ©s gĂšnes de dĂ©termination du sexe. A l’heure actuelle, parmi les gĂšnes de dĂ©termination connus, trois familles de gĂšnes nommĂ©ment sox, dmrt and les facteurs TGF-ß gouvernent ce processus de dĂ©veloppement.Comme exception Ă  cette rĂšgle, sdY « sexually dimorphic on the Y » n’appartient Ă  aucune de ces familles puisqu’il provient d’une duplication/Ă©volution d’un gĂšne ancestral de l’immunitĂ©, c’est-Ă -dire d’un facteur liĂ© Ă  l’interfĂ©ron, irf9. sdY est le gĂšne maĂźtre de la dĂ©termination du sexe chez les salmonidĂ©s, un groupe de poissons incluant des espĂšces tel que la truite arc-en-ciel et le saumon Altantique. L’étude prĂ©sentĂ©e avait pour but de premiĂšrement caractĂ©riser les propriĂ©tĂ©s de la protĂ©ine SdY. DeuxiĂšment, l’étude a pour but de comprendre comment SdY pouvait entraĂźner la diffĂ©rentiation testiculaire. Les rĂ©sultats pris dans leur ensemble proposent que SdY pourrait entraĂźner la diffĂ©rentiation testiculaire chez les salmonidĂ©s en interagissant avec un facteur prĂ©dominant de la voie femelle

    Biochemical and molecular characterization of an original master sex determining gene in salmonids

    No full text
    Le dĂ©veloppement du sexe est un processus fondamental et versatile qui forme la morphologie, la physiologie et le comportement des animaux. Le processus de dĂ©veloppement sous-jacent est composĂ© de la dĂ©termination et de la diffĂ©rentiation du sexe. Les mĂ©canismes de dĂ©termination du sexe sont souvent gĂ©nĂ©tiques et nommĂ©s gĂšnes de dĂ©termination du sexe. A l’heure actuelle, parmi les gĂšnes de dĂ©termination connus, trois familles de gĂšnes nommĂ©ment sox, dmrt and les facteurs TGF-ß gouvernent ce processus de dĂ©veloppement.Comme exception Ă  cette rĂšgle, sdY « sexually dimorphic on the Y » n’appartient Ă  aucune de ces familles puisqu’il provient d’une duplication/Ă©volution d’un gĂšne ancestral de l’immunitĂ©, c’est-Ă -dire d’un facteur liĂ© Ă  l’interfĂ©ron, irf9. sdY est le gĂšne maĂźtre de la dĂ©termination du sexe chez les salmonidĂ©s, un groupe de poissons incluant des espĂšces tel que la truite arc-en-ciel et le saumon Altantique. L’étude prĂ©sentĂ©e avait pour but de premiĂšrement caractĂ©riser les propriĂ©tĂ©s de la protĂ©ine SdY. DeuxiĂšment, l’étude a pour but de comprendre comment SdY pouvait entraĂźner la diffĂ©rentiation testiculaire. Les rĂ©sultats pris dans leur ensemble proposent que SdY pourrait entraĂźner la diffĂ©rentiation testiculaire chez les salmonidĂ©s en interagissant avec un facteur prĂ©dominant de la voie femelle.Sexual development is a fundamental and versatile process that shapes animal morphology, physiology and behavior. The underlying developmental process is composed of the sex determination and the sex differentiation. The initial triggers are often genetics called sex determining genes. To date, among the known sex determining genes, three gene families namely sox, dmrt and TGF-ß factors govern this developmental program. As exception to this rule, sdY “sexually dimorphic on the Y” does not belong to one of these families as it comes from the duplication / evolution of an ancestor gene related to immunity, i.e., the interferon related factor 9, irf9.sdY is the master sex determining gene in salmonids, a group of fishes that include species such as rainbow trout and Atlantic salmon. The present study was aimed to firstly characterize the features of SdY protein. Results indicate that SdY is predominantly localized in the cytoplasm, composed of a ß-sandwich core surrounded by three a-helices as well specific characteristics conferring a putative protein-protein interaction site. Secondly, the study was aimed to understand how SdY could trigger testicular differentiation. Altogether results propose that SdY would trigger testicular differentiation in salmonids by interacting with a prominent female factor

    Biochemische und molekulare Charakterisierung des Mastergens bei der Sex-bestimmung in Salmoniden

    No full text
    Sexual development is a fundamental and versatile process that shapes animal morphology, physiology and behavior. The underlying developmental process is composed of the sex determination and the sex differentiation. Sex determination mechanisms are extremely labile among taxa. The initial triggers of the sex determination process are often genetics called sex determining genes. These genes are expressed in the bipotential gonad and tilt the balance to a developmental program allowing the differentiation of either a testis or an ovary. Fish represent a large and fascinating vertebrate group to study both sex determination and sex differentiation mechanisms. To date, among the known sex determining genes, three gene families namely sox, dmrt and TGF-ÎČ factors govern this developmental program. As exception to this rule, sdY “sexually dimorphic on the Y” does not belong to one of these families as it comes from the duplication / evolution of an ancestor gene related to immunity, i.e., the interferon related factor 9, irf9. sdY is the master sex determining gene in salmonids, a group of fishes that include species such as rainbow trout and Atlantic salmon. The present study was aimed to firstly characterize the features of SdY protein. Results indicate that SdY is predominantly localized in the cytoplasm tested in various fish and mammalian cell lines and confirmed by different methods. Predictive in silico analysis revealed that SdY is composed of a ÎČ-sandwich core surrounded by three α-helices as well specific characteristics conferring a putative protein-protein interaction site. Secondly, the study was aimed to understand how SdY could trigger testicular differentiation. SdY is a truncated divergent version of Irf9 that has a conserved protein-protein domain but lost the DNA interaction domain of its ancestor gene. It was then hypothesized that SdY could initiate testicular differentiation by protein-protein interactions. To evaluate this we first conducted a yeast-two-hybrid screen that revealed a high proportion of transcription factors including fox proteins. Using various biochemical and cellular methods we confirm an interaction between SdY and Foxl2, a major transcription factor involved in ovarian differentiation and identity maintenance. Interestingly, the interaction of SdY with Foxl2 leads to nuclear translocation of SdY from the cytoplasm. Furthermore, this SdY translocation mechanism was found to be specific to fish Foxl2 and to a lesser extend Foxl3 and not other Fox proteins or mammalian FoxL2. In addition, we found that this interaction allows the stabilization of SdY and prevents its degradation. Finally, to better decipher SdY action we used as a model a mutated version of SdY that was identified in XY females of Chinook salmon natural population. Results show that this mutation induces a local conformation defect obviously leading to a misfolded protein and a quick degradation. Moreover, the mutated version compromised the interaction with Foxl2 defining a minimal threshold to induce testicular differentiation. Altogether results from my thesis propose that SdY would trigger testicular differentiation in salmonids by preventing Foxl2 to promote ovarian differentiation. Further research should be now carried out on how this interaction of SdY and Foxl2 acts in-vivo.Le dĂ©veloppement du sexe est un processus fondamental et versatile qui forme la morphologie, la physiologie et le comportement des animaux. Le processus de dĂ©veloppement sous-jacent est composĂ© de la dĂ©termination et de la diffĂ©rentiation du sexe. Les mĂ©canismes de dĂ©termination du sexe sont extrĂȘment labile parmi les taxons. Les signaux initiaux du processus de dĂ©termination du sexe sont souvent gĂ©nĂ©tiques et nommĂ©s gĂšnes de dĂ©termination du sexe. Ces gĂšnes sont exprimĂ©s dans la gonade bipotente et font pencher l’équilibre vers un programme de dĂ©veloppement permettant la formation soit d’un testicule soit d’un ovaire. Les poissons reprĂ©sentent un large et fascinant groupe de vertĂ©brĂ©s pour Ă©tudier les processus de dĂ©termination et de diffĂ©rentiation du sexe. A l’heure actuelle, parmi les gĂšnes de dĂ©termination connus, trois familles de gĂšnes nommĂ©ment sox, dmrt and les facteurs TGF-ÎČ gouvernent ce processus de dĂ©veloppement. Comme exception Ă  cette rĂšgle, sdY « sexually dimorphic on the Y » n’appartient Ă  aucune de ces familles puisqu’il provient d’une duplication/Ă©volution d’un gĂšne ancestral de l’immunitĂ©, c’est-Ă -dire d’un facteur liĂ© Ă  l’interfĂ©ron, irf9. sdY est le gĂšne maĂźtre de la dĂ©termination du sexe chez les salmonidĂ©s, un groupe de poissons incluant des espĂšces tel que la truite arc-en-ciel et le saumon Altantique. L’étude prĂ©sentĂ©e avait pour but de premiĂšrement caractĂ©riser les propriĂ©tĂ©s de la protĂ©ine SdY. Les rĂ©sultats indiquent que SdY est localisĂ©e de façon prĂ©dominante dans le cytoplasme testĂ©s dans diverses cellules de poissons et de mammifĂšres et confirmĂ© par des diffĂ©rentes mĂ©thodes. Une analyse in silico prĂ©dictive a rĂ©vĂ©lĂ© que SdY est composĂ© d’un core ÎČ-sandwich entourĂ© par trois hĂ©lices-α ainsi que des caractĂ©ristiques lui confĂ©rant un site d’interaction protĂ©ine-protĂ©ine. DeuxiĂšment, l’étude avait pour but de comprendre comment SdY pouvait entraĂźner la diffĂ©rentiation testiculaire. SdY est une version tronquĂ©e divergente de Irf9 qui a conservĂ© le domaine protĂ©ine-protĂ©ine mais a perdu le domaine d’interaction Ă  l’ADN prĂ©sent dans le gĂšne ancestral. Il a Ă©tĂ© proposĂ© que SdY entraĂźne la diffĂ©rentiation testiculaire par interaction(s) protĂ©ine-protĂ©ine. Afin d’évaluer cette hypothĂšse, un crible double-hybride en systĂšme levure a rĂ©vĂ©lĂ© une forte proportion de facteurs de transcription incluant les protĂ©ines fox. En utilisant de nombreuses mĂ©thodes au niveau cellulaire et biochimique, nous avons confirmĂ© une interaction entre SdY et Foxl2, un facteur majeur impliquĂ© dans la diffĂ©rentiation ovarienne et gardien de son identitĂ©. De façon intĂ©ressante, l’interaction de SdY avec Foxl2 conduit Ă  une translocation nuclĂ©aire de SdY Ă  partir du cytoplasme. De plus, le mĂ©canisme de translocation de SdY est spĂ©cifique Ă  la protĂ©ine Foxl2 et dans une moindre mesure Ă  Foxl3 parmi les protĂ©ines Fox de poissons ou bien des protĂ©ines FoxL2 de mammifĂšres. Puis, nous avons montrĂ© que cette interaction permet la stabilisation de SdY et empĂȘche sa dĂ©gradation. Enfin, pour mieux dĂ©crypter l’action de SdY, nous avons utilisĂ© comme modĂšle une version mutĂ©e qui a Ă©tĂ© identifiĂ©e dans une population naturelle de saumon Chinook avec des individus XY femelles. Les rĂ©sultats montrent que la mutation induit un dĂ©faut de conformation local menant Ă  une protĂ©ine mal-repliĂ©e et Ă  sa dĂ©gradation. De plus, la version mutĂ©e compromet l’interaction avec Foxl2 dĂ©finissant un seuil minimal d’induction de la diffĂ©rentiation testiculaire. Les rĂ©sultats de ma thĂšse pris dans leur ensemble proposent que SdY pourrait entraĂźner la diffĂ©rentiation testiculaire chez les salmonidĂ©s en empĂȘchant Foxl2 d’induire la diffĂ©rentiation ovarienne. Les recherches doivent se poursuivre dans le but de comprendre comment l’interaction SdY avec Foxl2 fonctionne in vivo.Sexuelle Entwicklung ist ein grundlegender und vielfĂ€ltiger Prozess, der die Morphologie, Physiologie und das Verhalten von Tieren gestaltet. Der zugrundeliegende Entwicklungsprozess besteht aus der Geschlechtsbestimmung und der Geschlechtsdifferenzierung. Die Mechanismen der Geschlechtsbestimmung sind sehr instabil zwischen verschiedenen Arten. Die Auslöser des Prozesses der Geschlechtsbestimmung sind oft genetischen Ursprungs wie geschlechtsbestimmende Gene. Diese Gene werden in den bipotentialen Gonaden exprimiert und steuern die Balance eines entwicklungsgemĂ€ĂŸen Programms, das die Differenzierung zum Testis oder Ovar erlaubt. Fische reprĂ€sentieren eine umfangreiche und faszinierende Gruppe von Vertebraten, um die Mechanismen der Geschlechtsbestimmung und –differenzierung zu untersuchen. Bislang ist bekannt, dass –unter den bekannten geschlechtsbestimmenden Genen- die drei Gen-Familien sox, dmrt und die TGFß-Faktoren dieses Entwicklungsprogramm steuern. Als Ausnahme von dieser Regel ist sdY „sexually dimorphic on the Y“ keiner dieser Familien zugehörig da es von der Duplikation / Evolution eines VorgĂ€nger-Gens, das mit ImmunitĂ€t wie z.B. interferon related factor9, irf9, in Verbindung steht, herrĂŒhrt. sdY ist das Mastergen der Geschlechtsbestimmung in Salmoniden, die als Gruppe von Fischen Arten wie die Regenbogenforelle und den Atlantischen Lachs umfassen. Das Ziel der vorliegenden Arbeit war es zunĂ€chst die Eigenschaften des SdY Proteins zu charakterisieren. Die Ergebnisse zeigen, dass SdY vor allem im Zytoplasma lokalisiert ist. Dies wurde in verschiedenen Fischen und SĂ€ugetier Zelllinien untersucht und mit Hilfe verschiedener Methoden bestĂ€tigt. PrĂ€diktive in silico Analysen zeigten, dass SdY aus einem ß-sandwich Kern besteht, der von drei α-Helices umgeben ist sowie spezifischen Eigenschaften fĂŒr eine putative Protein-Protein Interaktion Stelle. Das zweite Ziel der vorliegenden Arbeit war es, zu verstehen, wie SdY die testikulĂ€re Differenzierung auslösen könnte. SdY ist eine verkĂŒrzte, divergente Version von Irf9, das eine konservierte Protein-Protein DomĂ€ne aufweist, jedoch seine DNA Interaktion DomĂ€ne a seines VorlĂ€ufer Gens verloren hat. Daher wurde angenommen, dass SdY die testikulĂ€re Differenzierung durch Protein-Protein Interaktion initiieren könnte. Um diese Hypothese zu bestĂ€tigen fĂŒhrten wir zuerst einen Yeast Two-Hybrid Screen durch, der einen hohen Anteil an Transkriptionsfaktoren darunter fox Proteine zeigte. Unter Einsatz verschiedener biochemischer und zellulĂ€rer Methoden bestĂ€tigten wir eine Interaktion zwischen SdY und Foxl2, einem wesentlichen Transkriptionsfaktor, der in die Differenzierung und die Erhaltung der IdentitĂ€t der Ovarien involviert ist. Interessanterweise fĂŒhrt die Interaktion von SdY mit Foxl2 zu einer nukleĂ€ren Translokation von SdY aus dem Zytoplasma. Außerdem wurde festgestellt, dass dieser SdY Translokations-Mechanismus fĂŒr das Fisch Foxl2 und in einem geringerem Maße fĂŒr Foxl3 spezifisch ist aber nicht fĂŒr andere Fox Proteine oder SĂ€uger FoxL2. Des Weiteren haben wir herausgefunden, dass diese Interaktion die Stabilisierung von SdY ermöglicht und sein Abbau verhindert. Zuletzt haben wir ein Modell einer mutierten Version von SdY benutzt, die in XY Weibchen der natĂŒrlichen Population der Königslachse identifiziert wurde, um die Wirkung von SdY besser zu entschlĂŒsseln. Die Ergebnisse zeigen, dass diese Mutation einen lokalen Konformationsdefekt verursacht, der zu fehlgefalteten Proteinen und einem raschen Abbau fĂŒhrt. DarĂŒber hinaus beeintrĂ€chtigt die mutierte Version die Interaktion mit FoxL2 und definiert einen minimalen Grenzwert, um die testikulĂ€re Differenzierung zu induzieren. Insgesamt deuten die Ergebnisse meiner Dissertation darauf hin, dass SdY die testikulĂ€re Differenzierung in Salmoniden auslöst, indem es verhindert, dass Foxl2 die Differenzierung der Ovarien fördert. In Zukunft soll erforscht werden, wie sich die Interaktion von SdY und Foxl2 in-vivo auswirkt

    Sex determination and sex control in salmonidae

    No full text
    The Salmonidae family comprises three sub‐families (Coregoninae, Thymallinae and Salmoninae), with 11 genera and about 66 species. Salmonid farming has grown considerably in the last fifty years, with Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss) being the main farmed species, and with an increasing production of large size fish that has required the development of all‐female or sterile populations. Salmonids are gonochoristic fishes with a genotypic sex determination (GSD) system, classically described as male heterogametic (XX/XY). Some temperature effects (GSD + TE) have been reported in a limited number of cases. The master sex determining gene, sdY (sexually dimorphic on the Y chromosome), has been characterized in rainbow trout, and is conserved in many salmonid species. sdY is expressed very early (around hatching in rainbow trout) during gonadal differentiation, long before the initiation of histological sex differentiation. In addition, other genes exhibit a sex‐dimorphic expression, particularly those involved in steroid synthesis, leading to a hypothesis in favor of a key role of estrogens in inducing and maintaining ovarian differentiation in salmonids. Sex control in salmonids is mostly carried out by producing XX neomales that give rise to all‐female populations after crossing with wild‐type females. These XX neomales are usually produced by masculinization of females, using an androgen treatment (the most commonly used being 17α‐methyltestosterone) administered in the food from the first feeding of larvae. Limits and concerns of such methods are discussed, and other potential approaches are foreseen

    beta-C(sp2)-H Alkylation of enamides using xanthate chemistry

    No full text
    Access to the Îł-amino-ÎČ,Îł-unsaturated acyl scaffold was established by applying xanthate chemistry to enamides. This original ÎČ-C(sp2)–H alkylation is regioselective and exhibits broad substrate scope and good functional group tolerance. The large availability of xanthates is advantageous to the scope of the reaction which combines a radical process and a polar reaction.International audienceAccess to the Îł-amino-ÎČ,Îł-unsaturated acyl scaffold was established by applying xanthate chemistry to enamides. This original ÎČ-C(sp2)–H alkylation is regioselective and exhibits broad substrate scope and good functional group tolerance. The large availability of xanthates is advantageous to the scope of the reaction which combines a radical process and a polar reaction
    corecore