1,181 research outputs found

    Shape sensing of miniature snake-like robots using optical fibers

    Get PDF
    Snake like continuum robots are increasingly used for minimally invasive surgery. Most robotic devices of this sort that have been reported to date are controlled in an open loop manner. Using shape sensing to provide closed loop feedback would allow for more accurate control of the robot's position and, hence, more precise surgery. Fiber Bragg Gratings, magnetic sensors and optical reflectance sensors have all been reported for this purpose but are often limited by their cost, size, stiffness or complexity of fabrication. To address this issue, we designed, manufactured and tested a prototype two-link robot with a built-in fiber-optic shape sensor that can deliver and control the position of a CO 2 -laser fiber for soft tissue ablation. The shape sensing is based on optical reflectance, and the device (which has a 4 mm outer diameter) is fabricated using 3D printing. Here we present proof-of-concept results demonstrating successful shape sensing - i.e. measurement of the angular displacement of the upper link of the robot relative to the lower link - in real time with a mean measurement error of only 0.7°

    Evidence for impurity-induced frustration in La2CuO4

    Full text link
    Zero-field muon spin rotation and magnetization measurements were performed in La2Cu{1-x}MxO4, for 0<x< 0.12, where Cu2+ is replaced either by M=Zn2+ or by M=Mg2+ spinless impurity. It is shown that while the doping dependence of the sublattice magnetization (M(x)) is nearly the same for both compounds, the N\'eel temperature (T_N(x)) decreases unambiguously more rapidly in the Zn-doped compound. This difference, not taken into account within a simple dilution model, is associated with the frustration induced by the Zn2+ impurity onto the Cu2+ antiferromagnetic lattice. In fact, from T_N(x) and M(x) the spin stiffness is derived and found to be reduced by Zn doping more significantly than expected within a dilution model. The effect of the structural modifications induced by doping on the exchange coupling is also discussed.Comment: 4 pages, 4 figure

    BN Interphase Processed by LP-CVD from Tris(Dimethylamino)Borane and Characterized using SiC/SiC Minicomposites

    Get PDF
    International audienceSiC/BN/SiC 1D minicomposites were produced by infiltration of a Hi-Nicalon (from Nippon Carbon, Japan) fiber tow in a Low Pressure Chemical Vapor Deposition reactor. Tris(dimethylamino)borane was used as a halogenide-free precursor for the BN interphase processing. This precursor prevents fiber and CVD apparatus from chemical damage. FT-IR and XPS analyses have confirmed the boron nitride nature of the films. Minicomposite tensile tests with unload-reload cycles have shown that the minicomposite mechanical properties are good with a high interfacial shear stress. Transmission electron microscopy observation of the interphase reveals that it is made of an anisotropic turbostratic material. Furthermore, the fiber/matrix debonding, which occurs during mechanical loading, is located within the BN interphase itself

    Phonon and crystal field excitations in geometrically frustrated rare earth titanates

    Get PDF
    The phonon and crystal field excitations in several rare earth titanate pyrochlores are investigated. Magnetic measurements on single crystals of Gd2Ti2O7, Tb2Ti2O7, Dy2Ti2O7 and Ho2Ti2O7 are used for characterization, while Raman spectroscopy and terahertz time domain spectroscopy are employed to probe the excitations of the materials. The lattice excitations are found to be analogous across the compounds over the whole temperature range investigated (295-4 K). The resulting full phononic characterization of the R2Ti2O7 pyrochlore structure is then used to identify crystal field excitations observed in the materials. Several crystal field excitations have been observed in Tb2Ti2O7 in Raman spectroscopy for the first time, among which all of the previously reported excitations. The presence of additional crystal field excitations, however, suggests the presence of two inequivalent Tb3+ sites in the low temperature structure. Furthermore, the crystal field level at approximately 13 cm-1 is found to be both Raman and dipole active, indicating broken inversion symmetry in the system and thus undermining its current symmetry interpretation. In addition, evidence is found for a significant crystal field-phonon coupling in Tb2Ti2O7. These findings call for a careful reassessment of the low temperature structure of Tb2Ti2O7, which may serve to improve its theoretical understanding.Comment: 13 pages, 7 figure

    How crucial is it to account for the antecedent moisture conditions in flood forecasting? Comparison of event-based and continuous approaches on 178 catchments

    Get PDF
    This paper compares event-based and continuous hydrological modelling approaches for real-time forecasting of river flows. Both approaches are compared using a lumped hydrologic model (whose structure includes a soil moisture accounting (SMA) store and a routing store) on a data set of 178 French catchments. The main focus of this study was to investigate the actual impact of soil moisture initial conditions on the performance of flood forecasting models and the possible compensations with updating techniques. The rainfall-runoff model assimilation technique we used does not impact the SMA component of the model but only its routing part. Tests were made by running the SMA store continuously or on event basis, everything else being equal. The results show that the continuous approach remains the reference to ensure good forecasting performances. We show, however, that the possibility to assimilate the last observed flow considerably reduces the differences in performance. Last, we present a robust alternative to initialize the SMA store where continuous approaches are impossible because of data availability problems

    Influence of experimental parameters on in vitro human skin permeation of Bisphenol A.

    Get PDF
    Bisphenol A (BPA) in vitro skin permeation studies have shown inconsistent results, which could be due to experimental conditions. We studied the impact of in vitro parameters on BPA skin permeation using flow-through diffusion cells with ex-vivo human skin (12 donors, 3-12 replicates). We varied skin status (viable or frozen skin) and thickness (200, 400, 800 μm), BPA concentrations (18, 250 mg/l) and vehicle volumes (10, 100 and 1000 μl/cm &lt;sup&gt;2&lt;/sup&gt; ). These conditions led to a wide range of BPA absorption (2%-24% after 24 h exposure), peak permeation rates (J = 0.02-1.31 μg/cm &lt;sup&gt;2&lt;/sup&gt; /h), and permeability coefficients (K &lt;sub&gt;p&lt;/sub&gt; = 1.6-5.2 × 10 &lt;sup&gt;-3&lt;/sup&gt; cm/h). This is the first time steady state conditions were reached for BPA aqueous solutions in vitro (1000 μl/cm &lt;sup&gt;2&lt;/sup&gt; applied at concentration 250 mg/l). A reduction of the skin thickness from 800 and 400 μm to 200 μm led to a 3-fold increase of J (P &lt; 0.05). A reduction of the vehicle volume from 1000 to 100 led to a 2-fold decrease in J (P &gt; 0.05). Previously frozen skin led to a 3-fold increase in J compared to viable skin (P &lt; 0.001). We found that results from published studies were consistent when adjusting J according to experimental parameters. We propose appropriate J values for different exposure scenarios to calculate BPA internal exposures for use in risk assessment

    An evaluation of a hot spot policing programme in four Argentinian cities

    Get PDF
    In 2017, hot spot policing interventions were implemented in four cities in Argentina: La Plata, Morón, Santa Fe and Tres de Febrero. Each intervention was similarly designed, organized and implemented. Results differed between cities. La Plata experienced the largest decreases, including a significant 31% decrease in robbery (while controlling for geographic displacement), whereas in other cities, a mix of non-significant decreases and increases in robbery and theft were observed. No displacement was observed to assaults or vehicle crime. The differences in impact between cities were likely to be associated with differences in the project management of each intervention

    Nonlinear oscillator with parametric colored noise: some analytical results

    Full text link
    The asymptotic behavior of a nonlinear oscillator subject to a multiplicative Ornstein-Uhlenbeck noise is investigated. When the dynamics is expressed in terms of energy-angle coordinates, it is observed that the angle is a fast variable as compared to the energy. Thus, an effective stochastic dynamics for the energy can be derived if the angular variable is averaged out. However, the standard elimination procedure, performed earlier for a Gaussian white noise, fails when the noise is colored because of correlations between the noise and the fast angular variable. We develop here a specific averaging scheme that retains these correlations. This allows us to calculate the probability distribution function (P.D.F.) of the system and to derive the behavior of physical observables in the long time limit
    corecore