394 research outputs found

    Penetration and cratering experiments of graphite by 0.5-mm diameter steel spheres at various impact velocities

    Get PDF
    Cratering experiments have been conducted with 0.5-mm diameter AISI 52100 steel spherical projectiles and 30-mm diameter, 15-mm long graphite targets. The latter were made of a commercial grade of polycrystalline and porous graphite named EDM3 whose behavior is known as macroscopically isotropic. A two-stage light-gas gun launched the steel projectiles at velocities between 1.1 and 4.5 km s 1. In most cases, post-mortem tomographies revealed that the projectile was trapped, fragmented or not, inside the target. It showed that the apparent crater size and depth increase with the impact velocity. This is also the case of the crater volume which appears to follow a power law significantly different from those constructed in previous works for similar impact conditions and materials. Meanwhile, the projectile depth of penetration starts to decrease at velocities beyond 2.2 km s 1. This is firstly because of its plastic deformation and then, beyond 3.2 km s 1, because of its fragmentation. In addition to these three regimes of penetration behavior already described by a few authors, we suggest a fourth regime in which the projectile melting plays a significant role at velocities above 4.1 km s 1. A discussion of these four regimes is provided and indicates that each phenomenon may account for the local evolution of the depth of penetration

    Flared landing approach flying qualities. Volume 2: Appendices

    Get PDF
    An in-flight research study was conducted utilizing the USAF/Total In-Flight Simulator (TIFS) to investigate longitudinal flying qualities for the flared landing approach phase of flight. A consistent set of data were generated for: determining what kind of command response the pilot prefers/requires in order to flare and land an aircraft with precision, and refining a time history criterion that took into account all the necessary variables and the characteristics that would accurately predict flying qualities. Seven evaluation pilots participated representing NASA Langley, NASA Dryden, Calspan, Boeing, Lockheed, and DFVLR (Braunschweig, Germany). The results of the first part of the study provide guidelines to the flight control system designer, using MIL-F-8785-(C) as a guide, that yield the dynamic behavior pilots prefer in flared landings. The results of the second part provide the flying qualities engineer with a derived flying qualities predictive tool which appears to be highly accurate. This time-domain predictive flying qualities criterion was applied to the flight data as well as six previous flying qualities studies, and the results indicate that the criterion predicted the flying qualities level 81% of the time and the Cooper-Harper pilot rating, within + or - 1%, 60% of the time

    Flared landing approach flying qualities. Volume 1: Experiment design and analysis

    Get PDF
    An inflight research study was conducted utilizing the USAF Total Inflight Simulator (TIFS) to investigate longitudinal flying qualities for the flared landing approach phase of flight. The purpose of the experiment was to generate a consistent set of data for: (1) determining what kind of commanded response the pilot prefers in order to flare and land an airplane with precision, and (2) refining a time history criterion that took into account all the necessary variables and their characteristics that would accurately predict flying qualities. The result of the first part provides guidelines to the flight control system designer, using MIL-F-8785-(C) as a guide, that yield the dynamic behavior pilots perfer in flared landings. The results of the second part provides the flying qualities engineer with a newly derived flying qualities predictive tool which appears to be highly accurate. This time domain predictive flying qualities criterion was applied to the flight data as well as six previous flying qualities studies, and the results indicate that the criterion predicted the flying qualities level 81% of the time and the Cooper-Harper pilot rating, within + or - 1, 60% of the time

    Dynamic cratering of graphite : experimental results and simulations

    Get PDF
    The cratering process in brittle materials under hypervelocity impact (HVI) is of major relevance for debris shielding in spacecraft or high-power laser applications. Amongst other materials, carbon is of particular interest since it is widely used as elementary component in composite materials. In this paper we study a porous polycrystalline graphite under HVI and laser impact, both leading to strong debris ejection and cratering. First, we report new experimental data for normal impacts at 4100 and 4200 m s-1 of a 500-μm-diameter steel sphere on a thick sample of graphite. In a second step, dynamic loadings have been performed with a high-power nanosecond laser facility. High-resolution X-ray tomographies and observations with a scanning electron microscope have been performed in order to visualize the crater shape and the subsurface cracks. These two post-mortem diagnostics also provide evidence that, in the case of HVI tests, the fragmented steel sphere was buried into the graphite target below the crater surface. The current study aims to propose an interpretation of the results, including projectile trapping. In spite of their efficiency to capture overall trends in crater size and shape, semi-empirical scaling laws do not usually predict these phenomena. Hence, to offer better insight into the processes leading to this observation, the need for a computational damage model is argued. After discussing energy partitioning in order to identify the dominant physical mechanisms occurring in our experiments, we propose a simple damage model for porous and brittle materials. Compaction and fracture phenomena are included in the model. A failure criterion relying on Weibull theory is used to relate material tensile strength to deformation rate and damage. These constitutive relations have been implemented in an Eulerian hydrocode in order to compute numerical simulations and confront them with experiments. In this paper, we propose a simple fitting procedure of the unknown Weibull parameters based on HVI results. Good agreement is found with experimental observations of crater shapes and dimensions, as well as debris velocity. The projectile inclusion below the crater is also reproduced by the model and a mechanism is proposed for the trapping process. At least two sets of Weibull parameters can be used to match the results. Finally, we show that laser experiment simulations may discriminate in favor of one set of parameters

    Renal Function in Relation to Cardiac 123I-MIBG Scintigraphy in Patients with Chronic Heart Failure

    Get PDF
    The aim of this study was to explore if estimates of renal function could explain variability of 123I-metaiodobenzylguanidine (123I-MIBG) assessed myocardial sympathetic activity. Furthermore estimates of renal function were compared to 123I-MIBG as predictors of cardiac death in chronic heart failure (CHF). Semi-quantitative parameters of 123I-MIBG myocardial uptake and washout were calculated using early heart/mediastinum ratio (H/M), late H/M and washout. Renal function was calculated as estimated Creatinine Clearance (e-CC) and as estimated Glomerular Filtration Rate (e-GFR). Thirty-nine patients with CHF (24 males; age: 64.4 ± 10.5 years; NYHA II/III/IV: 17/20/2; LVEF: 24.0 ± 11.5%) were studied. Variability in any of the semi-quantitative 123I-MIBG myocardial parameters could not be explained by e-CC or e-GFR. During follow-up (60 ± 37 months) there were 6 cardiac deaths. Cox proportional hazard regression analysis showed that late H/M was the only independent predictor for cardiac death (Chi-square 3.2, regression coefficient: −4.095; standard error: 2.063; hazard ratio: 0.17 [95% CI: 0.000–0.950]). Addition of estimates of renal function did not significantly change the Chi-square of the model. Semi-quantitative 123I-MIBG myocardial parameters are independent of estimates of renal function. In addition, cardiac sympathetic innervation assessed by 123I-MIBG scintigraphy seems to be superior to renal function in the prediction of cardiac death in CHF patients

    Influence of Multiple Light Scattering on PDV Measurements in Presence of Ejecta

    Get PDF
    Author Institution: French Alternative Energies and Atomic Energy Commission (CEA)Slides presented at the 2018 Photonic Doppler Velocimetry (PDV) Users Workshop, Drury Plaza Hotel, Santa Fe, New Mexico, May 16-18, 2018

    Multiple light scattering in metallic ejecta produced under intense shockwave compression

    Get PDF
    A roughened metallic plate, subjected to intense shock wave compression, gives rise to an expanding ejecta particle cloud. Photonic Doppler velocimetry (PDV), a fiber-based heterodyne velocimeter, is often used to track ejecta velocities in dynamic compression experiments and on nanosecond time scales. Shortly after shock breakout at the metal–vacuum interface, a particular feature observed in many experiments in the velocity spectrograms is what appear to be slow-moving ejecta, below the free-surface velocity. Using Doppler Monte Carlo simulations incorporating the transport of polarization in the ejecta, we show that this feature is likely to be explained by the multiple scattering of light, rather than by possible collisions among particles, slowing down the ejecta. As the cloud expands in a vacuum, the contribution of multiple scattering decreases due to the limited field of view of the pigtailed collimator used to probe the ejecta, showing that the whole geometry of the system must be taken into account in the calculations to interpret and predict PDV measurements. © 2018 Optical Society of America

    Status report on GANIL-SPIRAL1

    Get PDF
    International audienceThe GANIL facility (Caen, France) (Figure 1) is dedicated to the acceleration of heavy ion beams for nuclear physics, atomic physics, radiobiology and material irradiation. The production of radioactive ion beams for nuclear physics studies represents the main part of the activity. Two complementary methods are used: the Isotope Separation On-Line (ISOL, the SPIRAL1 facility) and the In-Flight Separation techniques (IFS). SPIRAL1, the ISOL facilty, is running since 2001, producing and post-accelerating radioactive ion beams. The energy range available goes from 1.2 MeV/A to 25 MeV/A with a compact cyclotron (CIME, K=265). The running mode of this machine will be recalled as well as a review of the operation from 2001 to 2006. A point will be done on the past, present and future projects which allow to continue to develop the capacities of this equipment and to answer the new demands from the physicists, such as new beamlines for low or high energy experiments, new diagnotics of control or the adaptation of an identification system using Silicon, Germanium or plastic detectors in the requirements of the operation evironnement

    A new access control unit for GANIL and SPIRAL 2

    Get PDF
    International audienceFor the GANIL safety revaluation and the new project of accelerator SPIRAL 2, it was decided to replace theexisting access control system for radiological controlled areas. These areas are all cyclotron rooms and experimental areas. The existing system is centralized around VME cards. Updating is becoming very problematic. The new UGA (access control unit) will becomposed of a pair of PLC to ensure the safety of each room. It will be supplemented by a system UGB (radiological control unit) that will assure the radiological monitoring of the area concerned
    corecore