35 research outputs found

    Interactions between soil, horizontal heat exchangers and environment: the ITER Project outcomes

    Get PDF
    The thermal properties of soils can be considered one of the most important parameters for many engineering projects designing. In detail, the thermal conductivity plays a fundamental role when dimensioning ground heat exchangers, especially very shallow geothermal (VSG) systems, interesting the first 2 m of depth from the ground level. However, the determination of heat transfer in soils is difficult to estimate, because depends on several factors, including, among others, particle size, density, water content, mineralogy composition, ground temperature, organic matter. The performance of a VSG system, as horizontal collectors or special forms, is strongly correlated to the kind of sediment at disposal and suddenly decreases in case of dry-unsaturated conditions in the surrounding soil. Therefore, a better knowledge of the relationship between thermal conductivity and water content is required for understanding the VSG systems behavior in saturated and unsaturated conditions. The overall aim of ITER Project (Improving Thermal Efficiency of horizontal ground heat exchangers), funded by European Union, is to ensure the sustainability of VSG systems. To enhance the performance of horizontal geothermal heat exchangers, thermally enhanced backfilling material (TEBM) have been tested in laboratory and monitored on site. In the test field the interactions between different soil mixtures, helix collectors installed in horizontal trenches and the surrounding environment have been studied. Analysis of data collected over more than one year have been processed and used in numerical simulations in order to understand the short and long term environmental impact of these technical solution

    Changes in physical-thermal properties of soil related to very shallow geothermal systems in urban areas

    Get PDF
    In the near future the population living in urban areas is expected to increase. This worldwide trend will lead to a high concentrations of infrastructures in confined areas, whose impact on land use and shallow subsurface must be well evaluated. Since shallow geothermal energy resource is becoming increasingly important as renewable energy resource, due to its huge potential in providing thermal energy for residential and tertiary buildings and in contributing to reduce greenhouse gas emission, the number of installed geothermal systems is expected to continue to rise in the near future. However, a leading question concerns the short and long-term effect of an intensive thermal use of the shallow subsurface for heat generation, cooling and thermal energy storage. From an environmental and technical point of view, changes on ground temperatures can influence the physical-thermal properties of soil and groundwater as well as their chemical and biological features. In this study the preliminary results of ITER Project are presented. This project, funded by European Union, focuses on improving heat transfer efficiency of very shallow geothermal systems, as horizontal collector systems or special forms (i.e. helix system), interesting the first 2 m of depth from ground level. Given the heterogeneity of sedimentary deposits in alluvial plain and the uncertainties related to the estimation of thermal parameters for unconsolidated material affected by thermal use, physical-thermal parameters (i.e. moisture content, bulk density, thermal conductivity...) where determined in laboratory for sand, clay and loamy sand samples. In addition, preliminary results from a field test site located within an urban area will be also shown. The main aim is to improve our knowledge of heat transfer process in the soil body in order (i) to create a reference database to compare subsequently the impact of temperature variations on the same properties and (ii) to provide reliable data for model parameterizatio

    Development of a Calculation Concept for Mapping Specific Heat Extraction for Very Shallow Geothermal Systems

    Get PDF
    Horizontal shallow geothermal applications are easy to install, and their installation process is less liable to legislation than other geothermal systems. Due to a lack of planning guidance, the opportunity to implement such systems is often overlooked, although geothermal installations are urgently needed as a sustainable energy source. To give a foundation for including very shallow geothermal systems in local heat supply planning, potential maps are crucial. To enable their utilization in energy use plans or similar elaborations for municipalities, location-specific and system-specific heat extractions are required. Since applicable standards are not available, it is nearly impossible to provide aggregate propositions, which are essential for potential maps. In this study, a concept was evolved for deriving very shallow geothermal potential maps with location-specific and system-specific heat extraction values. As a basis, VDI 4640 Part 2 information regarding heat extraction and respective climate zone references was utilized. Furthermore, climate information and a soil map were needed to apply the concept to the study area. The application of the concept in an Austrian study area resulted in appropriate potential maps. Moreover, this concept is similarly applicable in other areas of interest

    Laboratory Measurements of Gravel Thermal Conductivity: An Update Methodological Approach

    Get PDF
    Abstract Direct measurements of gravel thermal properties are usually quite challenging to be performed in laboratory, due to the very coarse sediments size. As a consequence, the reference thermal values provided by literature for gravels are quite limited and dispersed. A guarded hot plate Taurus Instruments TLP 800, usually used for measuring the thermal conductivity of buildings materials, was slightly modified in order to measure the thermal conductivity of some gravel samples. The tests were performed both in dry and wet conditions. The paper presents the first obtained results

    A Case Study of Thermal Evolution in the Vicinity of Geothermal Probes Following a Distributed TRT Method

    Full text link
    [EN] To meet the stated climate change targets and to ensure the capability of meeting the current and future energy demands, there is an urgent need to develop renewable energy sources, such as geothermal systems. If geothermal systems are to be cost-efficient and are to enjoy public confidence, it is essential that they are designed and installed in accordance with the prevailing site-specific conditions. A thorough understanding of the thermal behaviour of the surrounding ground is, therefore, critical. In this work, we investigated temperature and its evolution in the vicinity of a shallow geothermal helix-shaped borehole heat exchanger (BHE). To measure the temperature close to the actual geothermal system, an additional U-tube probe was installed at the edge of the same borehole. A thermal load was then applied to the BHE, and the temperature was detected in the nearby U-tube. The temperature measurements were made with a GEOSniff monitoring device. To understand these localised temperature measurements in the context of the Valencia test site, ERT measurements were also performed. The GEOSniff device permits measurements to be made with very high depth resolution, which allows the thermal properties of the surrounding ground to be derived precisely, thus, enabling the identification of the different textural domains.This research work has been supported financially by the European Cheap-GSHPs Project (funded by the European Union's Horizon 2020 research and innovation program under grant agreement No 657982) and by the European GEO4CIVHIC Project (funded by the European Union's Horizon 2020 research and innovation program under grant agreement No 792355).Schwarz, H.; Badenes Badenes, B.; Wagner, J.; Cuevas, JM.; Urchueguía Schölzel, JF.; Bertermann, D. (2021). A Case Study of Thermal Evolution in the Vicinity of Geothermal Probes Following a Distributed TRT Method. Energies. 14(9):1-17. https://doi.org/10.3390/en14092632S11714

    New tools to support the designing of efficient and reliable ground source heat exchangers: the Cheap-GSHPs databases and maps

    Get PDF
    Abstract. The final aim of the EU funded Cheap-GSHPs project is to reduce the total installation cost of closed-loop shallow geothermal systems. As part of the project a Decision Support System (DSS) has been developed and released on the web, in order to support the design of new closed-loop geo-exchange systems. The Cheap-GSHP project addresses all the aspects involved in planning and dimensioning a new borefield and therefore, the DSS is composed of several databases and tools that collect and elaborate the preliminary data and information that are necessary during the sizing phase, such as the geological and drilling aspects as well as the heating and cooling building demand. This paper briefly introduces the content of the databases and the mapping methodology developed for the Cheap-GSHPs DSS. All these researches are further deepen in the EU project GEO4CIVHIC, with a special attention to the application of shallow geothermal systems for building conditioning to historical buildings.</p

    An updated ground thermal properties database for GSHP applications

    Get PDF
    Abstract When a new ground source heat exchanger field is planned, underground thermal properties input data are necessary for the correct sizing of the geo-exchange system. To support the design, the EU founded Cheap-GSHPs project developed a Decision Support System, that comprises a new database of thermal properties for both rocks and unconsolidated sediments. The thermal properties database has been developed by integrating and comparing data (1) provided by the most important international guidelines, (2) acquired from a wide literature review and (3) obtained from more than 400 direct measurements. The data are mainly thermal conductivity data, hence the convective contribution provided by groundwater flow to heat transfer is not included. This paper presents and analyses the collected database

    EU project "Cheap-GSHPs": the geoexchange field laboratory

    Get PDF
    Abstract The Molinella test site is the open-air laboratory of the EU project entitled "Cheap-GSHPs: Cheap and Efficient Application of Reliable Ground Source Heat Exchangers and Pumps". Here, innovative helical heat baskets and steel coaxial probes are installed next to the traditional double-U. The tests involve the probes design as well as materials and drilling techniques and machines, therefore the newly developed GSHEs can be directly compared with the traditional ones with respect to technical issues and energetic performances. The Molinella test site therefore represents a very extraordinary possibility to improve the knowledge of heat transfer processes in shallow geo-exchange systems

    two software tools for facilitating the choice of ground source heat pumps by stakeholders and designers

    Get PDF
    For promoting the diffusion of GSHP and making the technology more accessible to the general public, in the H2020 research project "CHeap and Efficient APplication of reliable Ground Source Heat exchangers and PumpS" (acronym Cheap-GSHPs) a tool for sizing these systems has been developed, as well as a Decision Support System (DSS) able to assist the user in the preliminary design of the most suitable configuration. For all these tools a common platform has been carried out considering climatic conditions, energy demand of buildings, ground thermal properties, heat pump solutions repository, as well as renewable energy database to use in synergy with the GSHPs. Since the aims of the tools are different, there are different approaches. The design tool is mainly addressed to designers. The calculation may be done in two ways: with a simplified method based on the ASHRAE approach and with a detailed calculation based on the numerical tool CaRM (Capacity-Resistance method). The DSS final aim is to support decision-making, by providing the stakeholders at all the level with a series of scenario. The Cheap-GSHPs project has developed a DSS tool aimed at accelerating the decision-making process of designers and building owners as well as increasing market share of the Cheap-GSHPs technologies. Hence the DSS generates different possible solutions based on a defined general problem, identifying the optimal solution. Both tools are presented in the paper, showing the potentialities provided by both software

    Mediate relation between electrical and thermal conductivity of soil

    No full text
    Thermal conductivity is a key parameter for many soil applications, especially for dimensioning shallow and very shallow geothermal systems based on the possible heat extraction rate and for modelling heat transfer processes around high voltage underground cables. Due to the limited purview of direct thermal conductivity measurements, for an investigation of extensive areas, usually other geophysical methods like electrical resistivity tomography measurements are applied. To derive thermal conductivity of soil from geoelectrical measurements a relation between electrical and thermal conductivity is needed. Until now only few approaches worked on a direct correlation between both conductivities. Due to the difficulties of a direct relation, within this study a modular approach of a mediate correlation between electrical and thermal conductivity was investigated. Therefore, a direct relationship between a corrected electrical conductivity and water content as well as the standard and simple thermal conductivity model of Kersten (Bull of the Univ Minnesota 28:1–227, 1949) was used. To develop this concept soil types of sand, silt loam and clay were investigated where different saturation steps and pressure loads were applied. For each configuration electrical and thermal conductivity as well as water content and bulk density was determined. To refine the results of the calculated water content a corrective factor was applied. Furthermore, bulk density as an inlet parameter of the Kersten equation was also derived based on electrical conductivity. The suggested proceeding enables the determination of thermal conductivity solely based on electrical conductivity without prior soil property information.Bundesministerium für Wirtschaft und Technologie http://dx.doi.org/10.13039/50110000276
    corecore