51 research outputs found

    Acoustic far-field hypersonic surface wave detection with single plasmonic nanoantennas

    Get PDF
    The optical properties of small metallic particles allow us to bridge the gap between the myriad of subdiffraction local phenomena and macroscopic optical elements. The optomechanical coupling between mechanical vibrations of Au nanoparticles and their optical response due to collective electronic oscillations leads to the emission and the detection of surface acoustic waves (SAWs) by single metallic nanoantennas. We take two Au nanoparticles, one acting as a source and the other as a receptor of SAWs and, even though these antennas are separated by distances orders of magnitude larger than the characteristic subnanometric displacements of vibrations, we probe the frequency content, wave speed, and amplitude decay of SAWs originating from the damping of coherent mechanical modes of the source. Two-color pump-probe experiments and numerical methods reveal the characteristic Rayleigh wave behavior of emitted SAWs, and show that the SAW-induced optical modulation of the receptor antenna allows us to accurately probe the frequency of the source, even when the eigenmodes of source and receptor are detuned

    Efficient ultrafast all-optical modulation in a nonlinear crystalline gallium phosphide nanodisk at the anapole excitation

    Get PDF
    High–refractive index nanostructured dielectrics have the ability to locally enhance electromagnetic fields with low losses while presenting high third-order nonlinearities. In this work, we exploit these characteristics to achieve efficient ultrafast all-optical modulation in a crystalline gallium phosphide (GaP) nanoantenna through the optical Kerr effect (OKE) and two-photon absorption (TPA) in the visible/near-infrared range. We show that an individual GaP nanodisk can yield differential reflectivity modulations of up to ~40%, with characteristic modulation times between 14 and 66 fs, when probed at the anapole excitation (AE). Numerical simulations reveal that the AE represents a unique condition where both the OKE and TPA contribute with the same modulation sign, maximizing the response. These findings highly outperform previous reports on sub–100-fs all-optical switching from resonant nanoscale dielectrics, which have demonstrated modulation depths no larger than 0.5%, placing GaP nanoantennas as a promising choice for ultrafast all-optical modulation at the nanometer scale

    From optical to chemical hot spots in plasmonics

    Get PDF
    In recent years, the possibility to induce chemical transformations by using tunable plasmonic modes has opened the question of whether we can control or create chemical hot spots in these systems. This can be rationalized as the reactive analogue of the well-established concept of optical hot spots, which have drawn a great deal of attention to plasmonic nanostructures for their ability to circumvent the far-field diffraction limit of conventional optical elements. Although optical hot spots can be mainly defined by the geometry and permittivity of the nanostructures, the degrees of freedom influencing their photocatalytic properties appear to be much more numerous. In fact, the reactivity of plasmonic systems are deeply influenced by the dynamics and interplay of photons, plasmon-polaritons, carriers, phonons, and molecular states. These degrees of freedom can affect the reaction rates, the product selectivity, or the spatial localization of a chemical reaction. In this Account, we discuss the oportunities to control chemical hot spots by tuning the cascade of events that follows the excitation and decay of plasmonic modes in nanostructures. We discuss a series of techniques to spatially map and image plasmonic nanoscale reactivity at the single photocatalyst level. We show how to optimize the reactivity of carriers by manipulating their excitation and decay mechanisms in plasmonic nanoparticles. In addition, the tailored generation of non-thermal phonons in metallic nanostructures and their dissipation is shown as a promise to understand and exploit thermal photocatalysis at the nanoscale. Understanding and controlling these processes is essential for the rational design of solar nanometric photocatalysts. Nevertheless, the ultimate capability of a plasmonic photocatalyst to trigger a chemical reaction is correlated to its ability to navigate through, or even modify, the potential energy surface of a given chemical reaction. Here we reunite both worlds, the plasmonic photocatalysts and the molecular ones, identifying different energy transfer pathways and their influence on selectivity and efficiency of chemical reactions. We foresee that the migration from optical to chemical hot spots will greatly assist the understanding of ongoing plasmonic chemistry

    Sub-20 fs all-optical switching in a single Au-Clad Si nanodisk

    Get PDF
    Dielectric nanoantennas have recently emerged as promising elements for nonlinear and ultrafast nanophotonics due to their ability to concentrate light on the nanometer scale with low losses, while exhibiting large nonlinear susceptibilities. In this work, we demonstrate that single Si nanodisks covered with a thin 30 nm thick layer of Au can generate positive and negative sub-20 fs reflectivity modulations of ∼0.3% in the vicinity of the first-order anapole mode, when excited around the second-order anapole mode. The experimental results, characterized in the visible to near-infrared spectral range, suggest that the nonlinear optical Kerr effect is the responsible mechanism for the observed all-optical switching phenomena. These findings represent an important step toward nanoscale ultrafast all-optical signal processing

    Acoustic coupling between plasmonic nanoantennas: detection and directionality of surface acoustic waves

    No full text
    Hypersound waves can be efficient mediators between optical signals at the nanoscale. Having phase velocities several orders of magnitude lower than the speed of light, they propagate with much shorter wavelengths and can be controlled, directed, and even focused in a very small region of space. This work shows how two optical nanoantennas can be coupled through an acoustic wave that propagates with a certain directionality. An “emitter” antenna is first optically excited to generate acoustic coherent phonons that launch surface acoustic waves through the underlying substrate. These waves travel until they are mechanically detected by a “receiver” nanoantenna whose oscillation produces a detectable optical signal. Generation and detection are studied in detail, and new designs are proposed to improve the directionality of the hypersonic surface acoustic wave

    Development of the gas-puff imaging diagnostic in the TEXTOR tokamak

    Get PDF
    Gas puff imaging (GPI) [S. J. Zweben, D. P. Stotler et al. , Phys. Plasmas9, 1981 (Year: 2002)10.1063/1.1445179; R. J. Maqueda, G. A. Wurden et al. , Rev. Sci. Instrum.74, 2020 (Year: 2003)10.1063/1.1535249] is a powerful diagnostic that permits a two-dimensional measurement of turbulence in the edge region of a fusion plasma and is based on the observation of the local emission of a neutral gas, actively puffed into the periphery of the plasma. The developed in-vessel GPI telescope observes the emission from the puffed gas along local (at the puff) magnetic field lines. The GPI telescope is specially designed to operate in severe TEXTOR conditions and can be treated as a prototype for the GPI systems on next generation machines. Also, the gas puff nozzle is designed to have a lower divergence of the gas flow than previous GPI diagnostics. The resulting images show poloidally and radially propagating structures, which are associated with plasma blobs. We demonstrate that the local gas puff does not disturb plasma properties. Our results indicate also that the neutral gas emission intensity is more sensitive to the electron density than the electron temperature. Here, we present implementation details of the GPI system on TEXTOR and discuss some design and diagnostic issues related to the development of GPI systems in general

    Direct evidence of eddy breaking and tilting by edge sheared flows observed in the TEXTOR tokamak

    No full text
    In this letter, we present direct evidence of eddy breaking and tilting events observed at the edge of the TEXTOR tokamak using a 2D gas puff imaging diagnostic. The occurrence of eddy breaking depends on the magnitude of the E-r x B flow shearing rate. The results confirm the theoretical predictions about the influence of E-r x B sheared flows in tilting and splitting turbulence eddies, and consequently, reducing the turbulent transport
    corecore