1,099 research outputs found

    Impact of micro-telluric lines on precise radial velocities and its correction

    Full text link
    Context: In the near future, new instruments such as ESPRESSO will arrive, allowing us to reach a precision in radial-velocity measurements on the order of 10 cm/s. At this level of precision, several noise sources that until now have been outweighed by photon noise will start to contribute significantly to the error budget. The telluric lines that are not neglected by the masks for the radial velocity computation, here called micro-telluric lines, are one such noise source. Aims: In this work we investigate the impact of micro-telluric lines in the radial velocities calculations. We also investigate how to correct the effect of these atmospheric lines on radial velocities. Methods: The work presented here follows two parallel lines. First, we calculated the impact of the micro-telluric lines by multiplying a synthetic solar-like stellar spectrum by synthetic atmospheric spectra and evaluated the effect created by the presence of the telluric lines. Then, we divided HARPS spectra by synthetic atmospheric spectra to correct for its presence on real data and calculated the radial velocity on the corrected spectra. When doing so, one considers two atmospheric models for the synthetic atmospheric spectra: the LBLRTM and TAPAS. Results: We find that the micro-telluric lines can induce an impact on the radial velocities calculation that can already be close to the current precision achieved with HARPS, and so its effect should not be neglected, especially for future instruments such as ESPRESSO. Moreover, we find that the micro-telluric lines' impact depends on factors, such as the radial velocity of the star, airmass, relative humidity, and the barycentric Earth radial velocity projected along the line of sight at the time of the observation.Comment: Accepted in A&

    Io: IUE observations of its atmosphere and the plasma torus

    Get PDF
    Two of the main components of the atmosphere of Io, neutral oxygen and sulfur, were detected with the IUE. Four observations yield brightnesses that are similar, regardless of whether the upstream or the downstream sides of the torus plasma flow around Io is observed. A simple model requires the emissions to be produced by the interaction of O and S columns in the exospheric range with 2 eV electrons. Cooling of the 5 eV torus electrons is required prior to their interaction with the atmosphere of Io. Inconsistencies in the characteristics of the spectra that cannot be accounted for in this model require further analysis with improved atomic data. The Io plasma torus was monitored with the IUE. The long-term stability of the warm torus is established. The observed brightnesses were analyzed using a model of the torus, and variations of less than 30 percent in the composition are observed, the quantitative results being model dependent

    The HARPS search for southern extra-solar planets. XXIV. Companions to HD 85390, HD 90156 and HD 103197: A Neptune analogue and two intermediate mass planets

    Full text link
    We report the detection of three new extrasolar planets orbiting the solar type stars HD 85390, HD 90156 and HD 103197 with the HARPS spectrograph mounted on the ESO 3.6-m telescope at La Silla observatory. HD 85390 has a planetary companion with a projected intermediate mass (42.0 Earth masses) on a 788-day orbit (a=1.52 AU) with an eccentricity of 0.41, for which there is no analogue in the solar system. A drift in the data indicates the presence of another companion on a long period orbit, which is however not covered by our measurements. HD 90156 is orbited by a warm Neptune analogue with a minimum mass of 17.98 Earth masses (1.05 Neptune masses), a period of 49.8 days (a=0.25 AU) and an eccentricity of 0.31. HD 103197 has an intermediate mass planet on a circular orbit (P=47.8 d, Msini=31.2 Earth masses). We discuss the formation of planets of intermediate mass (about 30-100 Earth masses) which should be rare inside a few AU according to core accretion formation models.Comment: 9 pages, 5 figures. Accepted to A&

    Alice: The Rosetta Ultraviolet Imaging Spectrograph

    Full text link
    We describe the design, performance and scientific objectives of the NASA-funded ALICE instrument aboard the ESA Rosetta asteroid flyby/comet rendezvous mission. ALICE is a lightweight, low-power, and low-cost imaging spectrograph optimized for cometary far-ultraviolet (FUV) spectroscopy. It will be the first UV spectrograph to study a comet at close range. It is designed to obtain spatially-resolved spectra of Rosetta mission targets in the 700-2050 A spectral band with a spectral resolution between 8 A and 12 A for extended sources that fill its ~0.05 deg x 6.0 deg field-of-view. ALICE employs an off-axis telescope feeding a 0.15-m normal incidence Rowland circle spectrograph with a concave holographic reflection grating. The imaging microchannel plate detector utilizes dual solar-blind opaque photocathodes (KBr and CsI) and employs a 2 D delay-line readout array. The instrument is controlled by an internal microprocessor. During the prime Rosetta mission, ALICE will characterize comet 67P/Churyumov-Gerasimenko's coma, its nucleus, and the nucleus/coma coupling; during cruise to the comet, ALICE will make observations of the mission's two asteroid flyby targets and of Mars, its moons, and of Earth's moon. ALICE has already successfully completed the in-flight commissioning phase and is operating normally in flight. It has been characterized in flight with stellar flux calibrations, observations of the Moon during the first Earth fly-by, and observations of comet Linear T7 in 2004 and comet 9P/Tempel 1 during the 2005 Deep Impact comet-collision observing campaignComment: 11 pages, 7 figure

    The HARPS search for southern extra-solar planets. XXVII. Up to seven planets orbiting HD 10180: probing the architecture of low-mass planetary systems

    Full text link
    Context. Low-mass extrasolar planets are presently being discovered at an increased pace by radial velocity and transit surveys, opening a new window on planetary systems. Aims. We are conducting a high-precision radial velocity survey with the HARPS spectrograph which aims at characterizing the population of ice giants and super-Earths around nearby solar-type stars. This will lead to a better understanding of their formation and evolution, and yield a global picture of planetary systems from gas giants down to telluric planets. Methods. Progress has been possible in this field thanks in particular to the sub-m/s radial velocity precision achieved by HARPS. We present here new high-quality measurements from this instrument. Results. We report the discovery of a planetary system comprising at least five Neptune-like planets with minimum masses ranging from 12 to 25 M_Earth, orbiting the solar-type star HD 10180 at separations between 0.06 and 1.4 AU. A sixth radial velocity signal is present at a longer period, probably due to a 65-M_Earth object. Moreover, another body with a minimum mass as low as 1.4 M_Earth may be present at 0.02 AU from the star. This is the most populated exoplanetary system known to date. The planets are in a dense but still well-separated configuration, with significant secular interactions. Some of the orbital period ratios are fairly close to integer or half-integer values, but the system does not exhibit any mean-motion resonances. General relativity effects and tidal dissipation play an important role to stabilize the innermost planet and the system as a whole. Numerical integrations show long-term dynamical stability provided true masses are within a factor ~3 from minimum masses. We further note that several low-mass planetary systems exhibit a rather "packed" orbital architecture with little or no space left for additional planets. (Abridged)Comment: 20 pages, 15 figures, accepted for publication in A&

    The Nature and Frequency of the Gas Outbursts in Comet 67P/Churyumov-Gerasimenko observed by the Alice Far-ultraviolet Spectrograph on Rosetta

    Full text link
    Alice is a far-ultraviolet imaging spectrograph onboard Rosetta that, amongst multiple objectives, is designed to observe emissions from various atomic and molecular species from within the coma of comet 67P/Churyumov-Gerasimenko. The initial observations, made following orbit insertion in August 2014, showed emissions of atomic hydrogen and oxygen spatially localized close to the nucleus and attributed to photoelectron impact dissociation of H2O vapor. Weaker emissions from atomic carbon were subsequently detected and also attributed to electron impact dissociation, of CO2, the relative H I and C I line intensities reflecting the variation of CO2 to H2O column abundance along the line-of-sight through the coma. Beginning in mid-April 2015, Alice sporadically observed a number of outbursts above the sunward limb characterized by sudden increases in the atomic emissions, particularly the semi-forbidden O I 1356 multiplet, over a period of 10-30 minutes, without a corresponding enhancement in long wavelength solar reflected light characteristic of dust production. A large increase in the brightness ratio O I 1356/O I 1304 suggests O2 as the principal source of the additional gas. These outbursts do not correlate with any of the visible images of outbursts taken with either OSIRIS or the navigation camera. Beginning in June 2015 the nature of the Alice spectrum changed considerably with CO Fourth Positive band emission observed continuously, varying with pointing but otherwise fairly constant in time. However, CO does not appear to be a major driver of any of the observed outbursts.Comment: 6 pages, 4 figures, accepted for publication in the Astrophysical Journal Letter

    Reduced in vitro susceptibility to artemisinin derivatives associated with multi-resistance in a traveller returning from South-East Asia

    Get PDF
    Decreased in vitro susceptibility to dihydroartemisinin (21.2 nM) and artesunate (16.3 nM) associated with decreased susceptibility or resistance to quinine (1131 nM), mefloquine (166 nM), lumefantrine (114 nM), pyronaridine (70.5 nM) and piperaquine (91.1 nM) is reported in a patient returning from South-East Asia after trekking along the Mekong from the south of Laos to the north of Thailand. Decreased in vitro susceptibility to artemisinin derivatives did not appear to be mediated by the number of copies of pfmdr1 or pfATPase6, pfcrt, pfmdr1 or pfmrp polymorphism. The high IC50 to mefloquine of this Asian isolate was not associated with pfmdr1 copy number. Pfnhe-1 microsatellite ms4760 showed a profile 7 (ms4760-7) with three repeats of DNNND and one repeat of DDDNHNDNHNN, which is associated with high quinine reduced susceptibility. The patient recovered in three days without relapse after treatment with the association of quinine and doxycycline. Decreased in vitro susceptibility to quinine and the delayed effect of doxycycline may both have contributed to the delayed parasite clearance time, D4 (0.5%) and D7 (0.004%). The in vitro data, with IC50 for dihydroartemisinin and artesunate were up to ten times those of the reference clone W2, which suggests that this isolate may be resistant to artemisinin derivatives, associated with a decreased susceptibility to quinine
    • …
    corecore