98 research outputs found

    G-quadruplex forming sequences in the genome of all known human viruses: A comprehensive guide

    Get PDF
    G-quadruplexes are non-canonical nucleic-acid structures that control transcription, replication, and recombination in organisms. G-quadruplexes are present in eukaryotes, prokaryotes, and viruses. In the latter, mounting evidence indicates their key biological activity. Since data on viruses are scattered, we here present a comprehensive analysis of potential quadruplex-forming sequences (PQS) in the genome of all known viruses that can infect humans. We show that occurrence and location of PQSs are features characteristic of each virus class and family. Our statistical analysis proves that their presence within the viral genome is orderly arranged, as indicated by the possibility to correctly assign up to two-thirds of viruses to their exact class based on the PQS classification. For each virus we provide: i) the list of all PQS present in the genome (positive and negative strands), ii) their position in the viral genome, iii) the degree of conservation among strains of each PQS in its genome context, iv) the statistical significance of PQS abundance. This information is accessible from a database to allow the easy navigation of the results: http://www.medcomp.medicina.unipd.it/main_site/doku.php?id=g4virus. The availability of these data will greatly expedite research on G-quadruplex in viruses, with the possibility to accelerate finding therapeutic opportunities to numerous and some fearsome human diseases

    Decay of weak solutions to the 2D dissipative quasi-geostrophic equation

    Full text link
    We address the decay of the norm of weak solutions to the 2D dissipative quasi-geostrophic equation. When the initial data is in L2L^2 only, we prove that the L2L^2 norm tends to zero but with no uniform rate, that is, there are solutions with arbitrarily slow decay. For the initial data in LpL2L^p \cap L^2, with 1p<21 \leq p < 2, we are able to obtain a uniform decay rate in L2L^2. We also prove that when the L22α1L^{\frac{2}{2 \alpha -1}} norm of the initial data is small enough, the LqL^q norms, for q>22α1q > \frac{2}{2 \alpha -1} have uniform decay rates. This result allows us to prove decay for the LqL^q norms, for q22α1q \geq \frac{2}{2 \alpha -1}, when the initial data is in L2L22α1L^2 \cap L^{\frac{2}{2 \alpha -1}}.Comment: A paragraph describing work by Carrillo and Ferreira proving results directly related to the ones in this paper is added in the Introduction. Rest of the article remains unchange

    Leray and LANS-α\alpha modeling of turbulent mixing

    Get PDF
    Mathematical regularisation of the nonlinear terms in the Navier-Stokes equations provides a systematic approach to deriving subgrid closures for numerical simulations of turbulent flow. By construction, these subgrid closures imply existence and uniqueness of strong solutions to the corresponding modelled system of equations. We will consider the large eddy interpretation of two such mathematical regularisation principles, i.e., Leray and LANSα-\alpha regularisation. The Leray principle introduces a {\bfi smoothed transport velocity} as part of the regularised convective nonlinearity. The LANSα-\alpha principle extends the Leray formulation in a natural way in which a {\bfi filtered Kelvin circulation theorem}, incorporating the smoothed transport velocity, is explicitly satisfied. These regularisation principles give rise to implied subgrid closures which will be applied in large eddy simulation of turbulent mixing. Comparison with filtered direct numerical simulation data, and with predictions obtained from popular dynamic eddy-viscosity modelling, shows that these mathematical regularisation models are considerably more accurate, at a lower computational cost.Comment: 42 pages, 12 figure

    Horizontal Approximate Deconvolution for Stratified Flows: Analysis and Computations

    Full text link
    In this paper we propose a new Large Eddy Simulation model derived by approximate deconvolution obtained by means of wave-number asymptotic expansions. This LES model is designed for oceanic flows and in particular to simulate mixing of fluids with different temperatures, density or salinity. The model -which exploits some ideas well diffused in the community- is based on a suitable horizontal filtering of the equations. We prove a couple of a-priori estimates, showing certain mathematical properties and we present also the results of some preliminary numerical experiments

    The Inviscid Limit and Boundary Layers for Navier-Stokes Flows

    Full text link
    The validity of the vanishing viscosity limit, that is, whether solutions of the Navier-Stokes equations modeling viscous incompressible flows converge to solutions of the Euler equations modeling inviscid incompressible flows as viscosity approaches zero, is one of the most fundamental issues in mathematical fluid mechanics. The problem is classified into two categories: the case when the physical boundary is absent, and the case when the physical boundary is present and the effect of the boundary layer becomes significant. The aim of this article is to review recent progress on the mathematical analysis of this problem in each category.Comment: To appear in "Handbook of Mathematical Analysis in Mechanics of Viscous Fluids", Y. Giga and A. Novotn\'y Ed., Springer. The final publication is available at http://www.springerlink.co

    On the regularity up to the boundary for certain nonlinear elliptic systems

    Get PDF
    We consider a class of nonlinear elliptic systems and we prove regularity up to the boundary for second order derivatives. In the proof we trace carefully the dependence on the various parameters of the problem, in order to establish, in a further work, results for more general systems

    Time course of risk factors associated with mortality of 1260 critically ill patients with COVID-19 admitted to 24 Italian intensive care units

    Get PDF
    94noopenPurpose: To evaluate the daily values and trends over time of relevant clinical, ventilatory and laboratory parameters during the intensive care unit (ICU) stay and their association with outcome in critically ill patients with coronavirus disease 19 (COVID-19). Methods: In this retrospective–prospective multicentric study, we enrolled COVID-19 patients admitted to Italian ICUs from February 22 to May 31, 2020. Clinical data were daily recorded. The time course of 18 clinical parameters was evaluated by a polynomial maximum likelihood multilevel linear regression model, while a full joint modeling was fit to study the association with ICU outcome. Results: 1260 consecutive critically ill patients with COVID-19 admitted in 24 ICUs were enrolled. 78% were male with a median age of 63 [55–69] years. At ICU admission, the median ratio of arterial oxygen partial pressure to fractional inspired oxygen (PaO2/FiO2) was 122 [89–175] mmHg. 79% of patients underwent invasive mechanical ventilation. The overall mortality was 34%. Both the daily values and trends of respiratory system compliance, PaO2/FiO2, driving pressure, arterial carbon dioxide partial pressure, creatinine, C-reactive protein, ferritin, neutrophil, neutrophil–lymphocyte ratio, and platelets were associated with survival, while for lactate, pH, bilirubin, lymphocyte, and urea only the daily values were associated with survival. The trends of PaO2/FiO2, respiratory system compliance, driving pressure, creatinine, ferritin, and C-reactive protein showed a higher association with survival compared to the daily values. Conclusion: Daily values or trends over time of parameters associated with acute organ dysfunction, acid–base derangement, coagulation impairment, or systemic inflammation were associated with patient survival.openZanella A.; Florio G.; Antonelli M.; Bellani G.; Berselli A.; Bove T.; Cabrini L.; Carlesso E.; Castelli G.P.; Cecconi M.; Citerio G.; Coloretti I.; Corti D.; Dalla Corte F.; De Robertis E.; Foti G.; Fumagalli R.; Girardis M.; Giudici R.; Guiotto L.; Langer T.; Mirabella L.; Pasero D.; Protti A.; Ranieri M.V.; Rona R.; Scudeller L.; Severgnini P.; Spadaro S.; Stocchetti N.; Vigano M.; Pesenti A.; Grasselli G.; Aspesi M.; Baccanelli F.; Bassi F.; Bet A.; Biagioni E.; Biondo A.; Bonenti C.; Bottino N.; Brazzi L.; Buquicchio I.; Busani S.; Calini A.; Calligaro P.; Cantatore L.P.; Carelli S.; Carsetti A.; Cavallini S.; Cimicchi G.; Coppadoro A.; Dall'Ara L.; Di Gravio V.; Erba M.; Evasi G.; Facchini A.; Fanelli V.; Feliciotti G.; Fusarini C.F.; Ferraro G.; Gagliardi G.; Garberi R.; Gay H.; Giacche L.; Grieco D.; Guzzardella A.; Longhini F.; Manzan A.; Maraggia D.; Milani A.; Mischi A.; Montalto C.; Mormina S.; Noseda V.; Paleari C.; Pedeferri M.; Pezzi A.; Pizzilli G.; Pozzi M.; Properzi P.; Rauseo M.; Russotto V.; Saccarelli L.; Servillo G.; Spano S.; Tagliabue P.; Tonetti T.; Tullo L.; Vetrugno L.; Vivona L.; Volta C.A.; Zambelli V.; Zanoni A.Zanella, A.; Florio, G.; Antonelli, M.; Bellani, G.; Berselli, A.; Bove, T.; Cabrini, L.; Carlesso, E.; Castelli, G. P.; Cecconi, M.; Citerio, G.; Coloretti, I.; Corti, D.; Dalla Corte, F.; De Robertis, E.; Foti, G.; Fumagalli, R.; Girardis, M.; Giudici, R.; Guiotto, L.; Langer, T.; Mirabella, L.; Pasero, D.; Protti, A.; Ranieri, M. V.; Rona, R.; Scudeller, L.; Severgnini, P.; Spadaro, S.; Stocchetti, N.; Vigano, M.; Pesenti, A.; Grasselli, G.; Aspesi, M.; Baccanelli, F.; Bassi, F.; Bet, A.; Biagioni, E.; Biondo, A.; Bonenti, C.; Bottino, N.; Brazzi, L.; Buquicchio, I.; Busani, S.; Calini, A.; Calligaro, P.; Cantatore, L. P.; Carelli, S.; Carsetti, A.; Cavallini, S.; Cimicchi, G.; Coppadoro, A.; Dall'Ara, L.; Di Gravio, V.; Erba, M.; Evasi, G.; Facchini, A.; Fanelli, V.; Feliciotti, G.; Fusarini, C. F.; Ferraro, G.; Gagliardi, G.; Garberi, R.; Gay, H.; Giacche, L.; Grieco, D.; Guzzardella, A.; Longhini, F.; Manzan, A.; Maraggia, D.; Milani, A.; Mischi, A.; Montalto, C.; Mormina, S.; Noseda, V.; Paleari, C.; Pedeferri, M.; Pezzi, A.; Pizzilli, G.; Pozzi, M.; Properzi, P.; Rauseo, M.; Russotto, V.; Saccarelli, L.; Servillo, G.; Spano, S.; Tagliabue, P.; Tonetti, T.; Tullo, L.; Vetrugno, L.; Vivona, L.; Volta, C. A.; Zambelli, V.; Zanoni, A
    corecore