311 research outputs found

    Re-Design of a Packaging Machine Employing Linear Servomotors: a Description of Modelling Methods and Engineering Tools

    Get PDF
    open4noPosition-controlled servo-systems mostly make use of electric rotary motors and gearboxes and, if necessary, a transmission mechanism to convert rotary into linear motion. Even so, especially in the field of automatic machines for packaging, it should be highlighted that most of the required movements are usually linear, so that Linear Electric Motors (LEM) should somehow represent a more convenient solution for designers. LEM can directly generate the required trajectory avoiding any intermediate mechanism, thus potentially minimizing the number of linkages/mechanical parts and, therefore, the undesired backlash and compliance that come along. On the other hand, particularly within small-medium enterprises, LEM may be rarely employed despite obvious advantages, mostly due to their high-cost as compared to rotary actuators and the lack of knowledge of the achievable performance. In light of these considerations, the present paper reports an industrial case study where an automatic machine for packaging, comprising distributed actuation and several tasks requiring a linear motion, has been completely redesigned employing different kind of LEM (i.e. iron-core and iron-less). Such machine architecture is compared to a “traditional” design where brushless gear-motors are coupled to linkage systems. The paper mainly focuses on the selection criteria for the LEM system and on the engineering tools employed during the different design stages. Qualitative and quantitative conclusions are finally drawn, which may provide useful hints for designers that are willing to actually employ LEM-based solutions in an industrial scenarioopenBerselli, Giovanni; Bilancia, Pietro; Bruzzone, Luca; Fanghella, PietroBerselli, Giovanni; Bilancia, Pietro; Bruzzone, Luca; Fanghella, Pietr

    Compliant actuation based on dielectric elastomers for a force-feedback device: modeling and experimental evaluation

    Get PDF
    Thanks to their large power densities, low costs and shock-insensitivity, Dielectric Elastomers (DE)seem to be a promising technology for the implementation of light and compact force-feedback devices such as,for instance, haptic interfaces. Nonetheless, the development of these kinds of DE-based systems is not trivialowing to the relevant dissipative phenomena that affect the DE when subjected to rapidly changingdeformations. In this context, the present paper addresses the development of a force feedback controller foran agonist-antagonist linear actuator composed of a couple of conically-shaped DE films and a compliantmechanism behaving as a negative-rate bias spring. The actuator is firstly modeled accounting for the viscohyperelasticnature of the DE material. The model is then linearized and employed for the design of a forcecontroller. The controller employs a position sensor, which determines the actuator configuration, and a forcesensor, which measures the interaction force that the actuator exchanges with the environment. In addition, anoptimum full-state observer is also implemented, which enables both accurate estimation of the time-dependentbehavior of the elastomeric material and adequate suppression of the sensor measurement noise. Preliminaryexperimental results are provided to validate the proposed actuator-controller architectur

    Virtual Prototyping of a Flexure-based RCC Device for Automated Assembly

    Get PDF
    The actual use of Industrial Robots (IR) for assembly systems requires the exertion of suitable strategies allowing to overcome shortcomings about IR poor precision and repeatability. In this paper, the practical issues that emerge during common \ue2\u80\u9cpeg-in-hole\ue2\u80\u9d assembly procedures are discussed. In particular, the use of passive Remote Center of Compliance (RCC) devices, capable of compensating the IR non-optimal performance in terms of repeatability, is investigated. The focus of the paper is the design and simulation of a flexure-based RCC that allows the prevention of jamming, due to possible positioning inaccuracies during peg insertion. The proposed RCC architecture comprises a set of flexural hinges, whose behavior is simulated via a CAE tool that provides built-in functions for modelling the motion of compliant members. For given friction coefficients of the contact surfaces, these numerical simulations allow to determine the maximum lateral and angular misalignments effectively manageable by the RCC device

    Global regularity criterion for the 3D Navier-Stokes equations involving one entry of the velocity gradient tensor

    Full text link
    In this paper we provide a sufficient condition, in terms of only one of the nine entries of the gradient tensor, i.e., the Jacobian matrix of the velocity vector field, for the global regularity of strong solutions to the three-dimensional Navier-Stokes equations in the whole space, as well as for the case of periodic boundary conditions

    A Modular Regularized Variational Multiscale Proper Orthogonal Decomposition for Incompressible Flows

    Full text link
    In this paper, we propose, analyze and test a post-processing implementation of a projection-based variational multiscale (VMS) method with proper orthogonal decomposition (POD) for the incompressible Navier-Stokes equations. The projection-based VMS stabilization is added as a separate post-processing step to the standard POD approximation, and since the stabilization step is completely decoupled, the method can easily be incorporated into existing codes, and stabilization parameters can be tuned independent from the time evolution step. We present a theoretical analysis of the method, and give results for several numerical tests on benchmark problems which both illustrate the theory and show the proposed method's effectiveness

    Compliant actuation based on dielectric elastomers for a force-feedback device: modeling and experimental evaluation

    Get PDF
    Thanks to their large power densities, low costs and shock-insensitivity, Dielectric Elastomers (DE) seem to be a promising technology for the implementation of light and compact force-feedback devices such as, for instance, haptic interfaces. Nonetheless, the development of these kinds of DE-based systems is not trivial owing to the relevant dissipative phenomena that affect the DE when subjected to rapidly changing deformations. In this context, the present paper addresses the development of a force feedback controller for an agonist-antagonist linear actuator composed of a couple of conically-shaped DE films and a compliant mechanism behaving as a negative-rate bias spring. The actuator is firstly modeled accounting for the viscohyperelastic nature of the DE material. The model is then linearized and employed for the design of a force controller. The controller employs a position sensor, which determines the actuator configuration, and a force sensor, which measures the interaction force that the actuator exchanges with the environment. In addition, an optimum full-state observer is also implemented, which enables both accurate estimation of the time-dependent behavior of the elastomeric material and adequate suppression of the sensor measurement noise. Preliminary experimental results are provided to validate the proposed actuator-controller architecture&nbsp

    When Does Eddy Viscosity Damp Subfilter Scales Sufficiently?

    Get PDF
    Large eddy simulation (LES) seeks to predict the dynamics of spatially filtered turbulent flows. The very essence is that the LES-solution contains only scales of size ≥Δ, where Δ denotes some user-chosen length scale. This property enables us to perform a LES when it is not feasible to compute the full, turbulent solution of the Navier-Stokes equations. Therefore, in case the large eddy simulation is based on an eddy viscosity model we determine the eddy viscosity such that any scales of size <Δ are dynamically insignificant. In this paper, we address the following two questions: how much eddy diffusion is needed to (a) balance the production of scales of size smaller than Δ; and (b) damp any disturbances having a scale of size smaller than Δ initially. From this we deduce that the eddy viscosity νe has to depend on the invariants q = ½tr(S^2) and r =−⅓tr(S^3) of the (filtered) strain rate tensor S. The simplest model is then given by νe = 3/2(Δ/π)^2|r|/q. This model is successfully tested for a turbulent channel flow (Reτ = 590).

    Stochastic attractors for shell phenomenological models of turbulence

    Full text link
    Recently, it has been proposed that the Navier-Stokes equations and a relevant linear advection model have the same long-time statistical properties, in particular, they have the same scaling exponents of their structure functions. This assertion has been investigate rigorously in the context of certain nonlinear deterministic phenomenological shell model, the Sabra shell model, of turbulence and its corresponding linear advection counterpart model. This relationship has been established through a "homotopy-like" coefficient λ\lambda which bridges continuously between the two systems. That is, for λ=1\lambda=1 one obtains the full nonlinear model, and the corresponding linear advection model is achieved for λ=0\lambda=0. In this paper, we investigate the validity of this assertion for certain stochastic phenomenological shell models of turbulence driven by an additive noise. We prove the continuous dependence of the solutions with respect to the parameter λ\lambda. Moreover, we show the existence of a finite-dimensional random attractor for each value of λ\lambda and establish the upper semicontinuity property of this random attractors, with respect to the parameter λ\lambda. This property is proved by a pathwise argument. Our study aims toward the development of basic results and techniques that may contribute to the understanding of the relation between the long-time statistical properties of the nonlinear and linear models
    corecore