61 research outputs found

    The Abdominal Circulatory Pump

    Get PDF
    Blood in the splanchnic vasculature can be transferred to the extremities. We quantified such blood shifts in normal subjects by measuring trunk volume by optoelectronic plethysmography, simultaneously with changes in body volume by whole body plethysmography during contractions of the diaphragm and abdominal muscles. Trunk volume changes with blood shifts, but body volume does not so that the blood volume shifted between trunk and extremities (Vbs) is the difference between changes in trunk and body volume. This is so because both trunk and body volume change identically with breathing and gas expansion or compression. During tidal breathing Vbs was 50–75 ml with an ejection fraction of 4–6% and an output of 750–1500 ml/min. Step increases in abdominal pressure resulted in rapid emptying presumably from the liver with a time constant of 0.61±0.1SE sec. followed by slower flow from non-hepatic viscera. The filling time constant was 0.57±0.09SE sec. Splanchnic emptying shifted up to 650 ml blood. With emptying, the increased hepatic vein flow increases the blood pressure at its entry into the inferior vena cava (IVC) and abolishes the pressure gradient producing flow between the femoral vein and the IVC inducing blood pooling in the legs. The findings are important for exercise because the larger the Vbs the greater the perfusion of locomotor muscles. During asystolic cardiac arrest we calculate that appropriate timing of abdominal compression could produce an output of 6 L/min. so that the abdominal circulatory pump might act as an auxiliary heart

    Shear behavior of DFDP-1 borehole samples from the Alpine Fault, New Zealand, under a wide range of experimental conditions

    Get PDF
    The Alpine Fault is a major plate-boundary fault zone that poses a major seismic hazard in southern New Zealand. The initial stage of the Deep Fault Drilling Project has provided sample material from the major lithological constituents of the Alpine Fault from two pilot boreholes. We use laboratory shearing experiments to show that the friction coefficient µ of fault-related rocks and their precursors varies between 0.38 and 0.80 depending on the lithology, presence of pore fluid, effective normal stress, and temperature. Under conditions appropriate for several kilometers depth on the Alpine Fault (100 MPa, 160 °C, fluid-saturated), a gouge sample located very near to the principal slip zone exhibits µ = 0.67, which is high compared with other major fault zones targeted by scientific drilling, and suggests the capacity for large shear stresses at depth. A consistent observation is that every major lithological unit tested exhibits positive and negative values of friction velocity dependence. Critical nucleation patch lengths estimated using representative values of the friction velocity-dependent parameter a−b and the critical slip distance D c , combined with previously documented elastic properties of the wall rock, may be as low as ~3 m. This small value, consistent with a seismic moment M o = ~4 × 1010 for an M w = ~1 earthquake, suggests that events of this size or larger are expected to occur as ordinary earthquakes and that slow or transient slip events are unlikely in the approximate depth range of 3–7 km

    The Kerepehi Fault, Hauraki Rift, North Island, New Zealand: active fault characterisation and hazard

    No full text
    <p>The Kerepehi Fault is an active normal fault with a total onshore length of up to 80 km comprising six geometric/rupture segments, with four more offshore segments to the north. For the last 20 ± 2.5 ka the slip rate has been 0.08–0.4 mm a<sup>–1</sup>. Average fault rupture recurrence intervals are 5 ka or less on the central segments and 10 ka or more on low slip rate segments to the north and south. Characteristic earthquakes for a single segment rupture range from <i>M</i><sub>w</sub> 5.5 to 7.0, and up to <i>M</i><sub>w</sub> 7.2 or 7.4 in the unlikely event of rupture of all the onshore fault segments. Fault rupture would result in damage to unreinforced masonry buildings, chimneys and parapets in Auckland (45 km nearest distant). Very severe damage to buildings in towns within the Hauraki Plains without specific seismic design (those built before 1960) may pose a significant risk to life and livelihood.</p

    The population dynamical implications of male-biased parasitism in different mating systems.

    Get PDF
    Although there is growing evidence that males tend to suffer higher levels of parasitism than females, the implications of this for the population dynamics of the host population are not yet understood. Here we build on an established ‘two-sex’ model and investigate how increased susceptibility to infection in males affects the dynamics, under different mating systems. We investigate the effect of pathogenic disease at different case mortalities, under both monogamous and polygynous mating systems. If the case mortality is low, then male-biased parasitism appears similar to unbiased parasitism in terms of its effect on the population dynamics. At higher case mortalities, we identified significant differences between male-biased and unbiased parasitism. A host population may therefore be differentially affected by male-biased and unbiased parasitism. The dynamical outcome is likely to depend on a complex interaction between the host's mating system and demography, and the parasite virulence
    • …
    corecore