18 research outputs found

    Tempranillo grape extract in transfersomes: A nanoproduct with antioxidant activity

    Get PDF
    Polyphenols are gaining increasing interest due to their beneficial properties to human health. Grape pomace, the by-product of wine production, is a source of these bioactive compounds. An extract from Tempranillo grape pomace was obtained and characterized qualitatively and quantitatively. The major components found were anthocyanins, flavan-3-ols, and flavonols. To improve the bioavailability of these compounds, the extract was formulated in phospholipid vesicles, namely transfersomes. Spherical unilamellar vesicles around 100 nm each were obtained. The antioxidant activity of both the extract and the transfersomes was evaluated by using colorimetric assays (i.e., DPPH, FRAP, and Folin–Ciocalteu). The cells’ viability and the antioxidant activity were assessed in keratinocytes. The results showed that the extract and the transfersomes had no cytotoxic effects and exerted remarkable antioxidant activity, which was more evident in a vesicle formulation. These findings highlighted the potential of the Tempranillo grape pomace extract and the efficacy of the incorporation into phospholipid vesicles.Fil: Asensio Regalado, Carlos. Universidad del País Vasco; EspañaFil: Alonso Salces, Rosa Maria. Universidad Nacional de Mar del Plata. Instituto de Investigaciones en Producción, Sanidad y Ambiente - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Producción, Sanidad y Ambiente; ArgentinaFil: Gallo, Blanca. Universidad del País Vasco; EspañaFil: Berrueta, Luis A.. Universidad del País Vasco; EspañaFil: Era, Benedetta. Università Degli Studi Di Cagliari.; ItaliaFil: Pintus, Francesca. Università Degli Studi Di Cagliari.; ItaliaFil: Caddeo, Carla. Università Degli Studi Di Cagliari.; Itali

    A reliable turning process by the early use of a deep simulation model at several manufacturing stages

    Get PDF
    The future of machine tools will be dominated by highly flexible and interconnected systems, in order to achieve the required productivity, accuracy, and reliability. Nowadays, distortion and vibration problems are easily solved in labs for the most common machining operations by using models based on the equations describing the physical laws of the machining processes; however, additional efforts are needed to overcome the gap between scientific research and real manufacturing problems. In fact, there is an increasing interest in developing simulation packages based on "deep-knowledge and models" that aid machine designers, production engineers, or machinists to get the most out of the machine-tools. This article proposes a methodology to reduce problems in machining by means of a simulation utility, which uses the main variables of the system and process as input data, and generates results that help in the proper decision-making and machining plan. Direct benefits can be found in (a) the fixture/ clamping optimal design; (b) the machine tool configuration; (c) the definition of chatter-free optimum cutting conditions and (d) the right programming of cutting toolpaths at the Computer Aided Manufacturing (CAM) stage. The information and knowledge-based approach showed successful results in several local manufacturing companies and are explained in the paper.The work presented in this paper was supported in some sections within the project entitled MuProD-Innovative Proactive Quality Control System for In-Process Multi-Stage Defect Reduction- of the Seventh Framework Program of the European Union [FoF.NMP.2011-5] and UPV/EHU under program UFI 11/29. Thanks are given to Tecnalia, for collaboration in testing, and especially to Ainhoa Gorrotxategi and Ander Jimenez for the sound work in the project. Thanks to Gamesa Eolica and Guruzpe, for the time, technical advices, and efforts during the analysis in examples

    Liquid chromatography coupled with ultraviolet absorbance detection, electrospray ionization, collision- induced dissociation and tandem mass spectrometry on a triple quadrupole for the on-line characterization of polyphenols and methylxanthines in green coffee beans

    No full text
    Liquid chromatography coupled with a photodiode array detector, electrospray ionization, collision- induced dissociation and tandem mass spectrometry (LC-DAD/ESI-CID-MS/MS) on a triple quad- rupole (QqQ) has been used to detect and characterize polyphenols and methylxanthines in green coffee beans: three phenolic acids (caffeic acid, ferulic acid and dimethoxycinnamic acid), three isomeric caffeoylquinic acids (Mr 354), three feruloylquinic acids (Mr 368), one p-coumaroylquinic acid (Mr 338), three dicaffeoylquinic acids (Mr 516), three feruloyl-caffeoylquinic acids (Mr 530), four p-coumaroyl-caffeoylquinic acids (Mr 500), three diferuloylquinic acids (Mr 544), six dimethoxycin- namoyl-caffeoylquinic acids (Mr 544), three dimethoxycinnamoyl-feruloylquinic acids (Mr 558), six cinnamoyl-amino acid conjugates, three cinnamoyl glycosides, and three methylxanthines (caffeine, theobromine and theophylline). Dimethoxycinnamic acid, three isomers of dimethoxycinnamoyl- caffeoylquinic acids and another three of dimethoxycinnamoyl-feruloylquinic acids, as well as the three cinnamoyl glycosides, had not previously been reported in coffee beans. Structures have been assigned on the basis of the complementary information obtained from UV-visible spectra, relative hydrophobicity, scan mode MS spectra, and fragmentation patterns in MS2 spectra (both in the positive and negative ion modes) obtained using a QqQ at different collision energies. A structure diagnosis scheme is provided for the identification of different isomers of polyphenols and methylxanthines.JRC.I.6-Systems toxicolog

    Searching over Public Administration Legal Documents Using Ontologies

    No full text
    Abstract. In this paper, we apply Semantic Web technologies to the creation o

    Characterization of phenolic compounds in green and red oak-leaf lettuce cultivars by UHPLC-DAD-ESI-QToF/MS using MSE scan mode

    No full text
    Lettuce (Lactuca sativa) is one of the most popular leafy vegetables in the world and constitutes a major dietary source of phenolic compounds with health-promoting properties. In particular, the demand for green and red oak-leaf lettuces has considerably increased in the last years but few data on their polyphenol composition are available. Moreover, the usage of analytical edge technology can provide new structural information and allow the identification of unknown polyphenols. In the present study, the phenolic profiles of green and red oak-leaf lettuce cultivars were exhaustively characterized by ultrahigh-performance liquid chromatography (UHPLC) coupled online to diode array detection (DAD), electrospray ionization (ESI), and quadrupole time-of-flight mass spectrometry (QToF/MS), using the MSE instrument acquisition mode for recording simultaneously exact masses of precursor and fragment ions. One hundred fifteen phenolic compounds were identified in the acidified hydromethanolic extract of freeze-dried lettuce leaves. Forty-eight of these compounds were tentatively identified for the first time in lettuce, and only 20 of them have been previously reported in oak-leaf lettuce cultivars in literature. Both oak-leaf lettuce cultivars presented similar phenolic composition, except for apigenin-glucuronide and dihydroxybenzoic acid, only detected in the green cultivar; and for luteolin-hydroxymalonylhexoside, an apigenin conjugate with molecular formula C40H54O19 (monoisotopic MW = 838.3259 u), cyanidin-3-O-glucoside, cyanidin-3-O-(3″-O-malonyl)glucoside, cyanidin-3-O-(6″-O-malonyl)glucoside, and cyanidin-3-O-(6″-O-acetyl)glucoside, only found in the red cultivar. The UHPLC-DAD-ESI-QToF/MSE approach demonstrated to be a useful tool for the characterization of phenolic compounds in complex plant matrices.Fil: Viacava, Gabriela Elena. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Departamento de Ingeniería Química. Grupo de Investigación en Ingeniería en Alimentos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Roura, Sara Ines. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Departamento de Ingeniería Química. Grupo de Investigación en Ingeniería en Alimentos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Berrueta, Luis A.. Universidad del País Vasco; EspañaFil: Iriondo, Carmen. Universidad del País Vasco; EspañaFil: Gallo, Blanca. Universidad del País Vasco; EspañaFil: Alonso Salces, Rosa Maria. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Departamento de Biología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Polyphenolic profile of butterhead lettuce cultivar by ultrahigh performance liquid chromatography coupled online to UV–visible spectrophotometry and quadrupole time-of-flight mass spectrometry

    Get PDF
    In the present study, the butterhead lettuce cultivar was analyzed by ultrahigh performance liquid chromatography (UHPLC) coupled online to diode array detection (DAD), electrospray ionization (ESI) and quadrupole time-of-flight mass spectrometry (QToF/MS) in the positive and negative ion mode in order to characterize its polyphenolic profile for the first time. The instrument acquisition mode MSE was used to collect automatic and simultaneous information of exact mass at high and low collision energies of precursor ions as well as other ions produced as a result of their fragmentation. One hundred eleven phenolic compounds were identified in the acidified hydromethanolic extract of freeze-dried leaves of butterhead lettuce cultivar: 40 hydroxycinnamic acid derivatives, 21 hydroxybenzoic acid derivatives, 2 hydroxyphenylacetic acid derivatives, 18 flavonols, 9 flavones, one flavanone, 7 coumarins, one hydrolysable tannin and 12 lignans. Forty-seven of these compounds have been tentatively identified for the first time in lettuce.Fil: Viacava, Gabriela Elena. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Departamento de Ingeniería Química. Grupo de Investigación en Ingeniería en Alimentos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Roura, Sara Ines. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Departamento de Ingeniería Química. Grupo de Investigación en Ingeniería en Alimentos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: López Marquez, Diana Maria. Universidad del País Vasco. Facultad de Ciencia y Tecnología. Departamento de Química Analítica; EspañaFil: Berrueta, Luis A.. Universidad del País Vasco. Facultad de Ciencia y Tecnología. Departamento de Química Analítica; EspañaFil: Gallo, Blanca. Universidad del País Vasco. Facultad de Ciencia y Tecnología. Departamento de Química Analítica; EspañaFil: Alonso Salces, Rosa Maria. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Departamento de Biología. Laboratorio de Artrópodos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    A Liposomal Formulation to Exploit the Bioactive Potential of an Extract from Graciano Grape Pomace

    Get PDF
    Antioxidant compounds with health benefits can be found in food processing residues, such as grape pomace. In this study, antioxidants were identified and quantified in an extract obtained from Graciano red grape pomace via a green process. The antioxidant activity of the extract was assessed by the DPPH and FRAP tests, and the phenolic content by the Folin–Ciocalteu test. Furthermore, nanotechnologies were employed to produce a safe and effective formulation that would exploit the antioxidant potential of the extract for skin applications. Anthocyanins, flavan-3-ols and flavanols were the main constituents of the grape pomace extract. Phospholipid vesicles, namely liposomes, were prepared and characterized. Cryo-TEM images showed that the extract-loaded liposomes were predominantly spherical/elongated, small, unilamellar vesicles. Light scattering results revealed that the liposomes were small (~100 nm), homogeneously dispersed, and stable during storage. The non-toxicity of the liposomal formulation was demonstrated in vitro in skin cells, suggesting its possible safe use. These findings indicate that an extract with antioxidant properties can be obtained from food processing residues, and a liposomal formulation can be developed to exploit its bioactive value, resulting in a promising healthy product

    Untargeted Metabolomic Liquid Chromatography High-Resolution Mass Spectrometry Fingerprinting of Apple Cultivars for the Identification of Biomarkers Related to Resistance to Rosy Apple Aphid

    No full text
    Liquid chromatography high-resolution mass spectrometry fingerprinting together with pattern recognition techniques was used to determine the metabolites involved in the susceptibility of apple cultivars to rosy apple aphid (RAA). Preprocessing of ultra-high-performance liquid chromatography coupled to electrospray ionization and quadrupole time-of-flight mass spectrometry raw data of resistant and susceptible apple cultivars was carried out with XCMS and CAMERA packages. Univariate statistical tools and multivariate data analysis highlighted significant different profiles of the apple metabolomes according to their tolerance to RAA. Optimized and cross-validated Partial least squares discriminant analysis and orthogonal projections to latent structures discriminant analysis models confirmed trans-4-caffeoylquinic acid and 4-p-coumaroylquinic acid as biomarkers for the identification of resistant and susceptible apple cultivars to RAA and disclosed that only hydroxycinnamic acids are involved in the disease susceptibility of cultivars. In this sense, the final steps of the biosynthesis of caffeoylquinic acid (CQA) and p-coumaroylquinic acid (p-CoQA) become decisive because the isomerization of 5-CQA to 4-CQA is favored in resistant cultivars, whereas the isomerization of 5-p-CoQA to 4-p-CoQA is favored in susceptible cultivars.Fil: Alonso Salces, Rosa Maria. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones en Sanidad Producción y Ambiente. - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires. Instituto de Investigaciones en Sanidad Producción y Ambiente; ArgentinaFil: Berrueta, Luis A.. Universidad del País Vasco; EspañaFil: Abad García, Beatriz. Universidad del País Vasco; EspañaFil: Sasía Arriba, Andrea. Universidad del País Vasco; EspañaFil: Asensio Regalado, Carlos. Universidad del País Vasco; EspañaFil: Dapena, Enrique. No especifíca;Fil: Gallo, Blanca. Universidad del País Vasco; Españ

    Relationship between hydroxycinnamic acids and the resistance of apple cultivars to rosy apple aphid

    Get PDF
    The phenolic profiles of apple cultivars from the SERIDA Asturian cider apple breeding program, including parents and progenies, were determined by ultrahigh-performance liquid chromatography-diode array detector-electrospray ionization-quadrupole time of flight/mass spectrometer in order to study the relationship between phenols and the resistance of apple tree cultivars to rosy apple aphid (RAA). A pattern recognition technique named partial least square discriminant analysis (PLS-DA) was used to classify apple cultivars based on resistance to RAA, resistant and susceptible, reaching scores with accuracy higher than 97% and 91% respectively. Hydroxycinnamic acids, particularly 4-caffeoylquinic acid (4-CQA) and 4-p-coumaroylquinic acid (4-pCoQA), were identified as the major player in RAA resistance by the PLS-DA model. Indeed, the isomerisation 5-CQA → 4-CQA is favoured in resistant cultivars, whereas the isomerisation 5-pCoQA → 4-pCoQA is favoured in susceptible cultivars. As a result, resistant cultivars accumulate higher amounts of 4-CQA than susceptible ones, and the opposite occurs for 4-pCoQA. Also, minor isomerisations of 5-CQA to 1-CQA or 3-CQA show opposite behaviour for resistant and susceptible cultivars. Cultivar resistance to RAA is concluded to be related with the phenylpropanoid pathway, the isomerisation reactions being the key metabolic reaction for a cultivar to be resistant or susceptible to RAA.Fil: Berrueta, Luis A.. Universidad del País Vasco; EspañaFil: Sasía-Arriba, Andrea. Universidad del País Vasco; EspañaFil: Miñarro, Marcos. Serida; EspañaFil: Antón, María J.. Serida; EspañaFil: Alonso Salces, Rosa Maria. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Departamento de Biología. Laboratorio de Artrópodos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; ArgentinaFil: Micheletti, Diego. Instituto Agrario San Michele all'Adige Fondazione Edmund Mach; ItaliaFil: Gallo, Blanca. Universidad del País Vasco; EspañaFil: Dapena, Enrique. Serida; Españ
    corecore