32 research outputs found

    Heavy quark scattering and quenching in a QCD medium at finite temperature and chemical potential

    Full text link
    The heavy quark collisional scattering on partons of the quark gluon plasma (QGP) is studied in a QCD medium at finite temperature and chemical potential. We evaluate the effects of finite parton masses and widths, finite temperature TT and quark chemical potential ÎŒq\mu_q on the different elastic cross sections for dynamical quasi-particles (on- and off-shell particles in the QGP medium as described by the dynamical quasi-particles model "DQPM") using the leading order Born diagrams. Our results show clearly the decrease of the qQqQ and gQgQ total elastic cross sections when the temperature and the quark chemical potential increase. These effects are amplified for finite ÎŒq\mu_q at temperatures lower than the corresponding critical temperature Tc(ÎŒq)T_c (\mu_q). Using these cross sections we, furthermore, estimate the energy loss and longitudinal and transverse momentum transfers of a heavy quark propagating in a finite temperature and chemical potential medium. Accordingly, we have shown that the transport properties of heavy quarks are sensitive to the temperature and chemical potential variations. Our results provide some basic ingredients for the study of charm physics in heavy-ion collisions at Beam Energy Scan (BES) at RHIC and CBM experiment at FAIR.Comment: 19 pages, 28 figure

    Towards the dynamical study of heavy-flavor quarks in the Quark-Gluon-Plasma

    Full text link
    Within the aim of a dynamical study of on- and off-shell heavy quarks Q in the quark gluon plasma (QGP) - as produced in relativistic nucleus-nucleus collisions - we study the heavy quark collisional scattering on partons of the QGP. The elastic cross sections σq,g−Q\sigma_{q,g-Q} are evaluated for perturbative partons (massless on-shell particles) and for dynamical quasi-particles (massive off-shell particles as described by the dynamical quasi-particles model "DQPM") using the leading order Born diagrams. We demonstrate that the finite width of the quasi-particles in the DQPM has little influence on the cross sections σq,g−Q\sigma_{q,g-Q} except close to thresholds. We, furthermore, calculate the heavy quark relaxation time as a function of temperature T within the different approaches using these cross sections.Comment: 4 pages, 5 figures, International Conference on Strangeness in Quark Matter 2013 (SQM 2013

    Collisional processes of on-shell and off-shell heavy quarks in vacuum and in the Quark-Gluon-Plasma

    Full text link
    We study the heavy quark scattering on partons of the quark gluon plasma (QGP) being especially interested in the collisional (elastic) scattering processes of heavy quarks on quarks and gluons. We calculate the different cross sections for perturbative partons (massless on-shell particles in the vacuum) and for dynamical quasi-particles (off-shell particles in the QGP medium as described by the dynamical quasi-particles model "DQPM") using the leading order Born diagrams. Our results show clearly the effect of a finite parton mass and width on the perturbative elastic (q(g)Q→q(g)Q)(q(g) Q \rightarrow q (g) Q) cross sections which depend on temperature TT, energy density Ï”\epsilon, the invariant energy s\sqrt{s} and the scattering angle Ξ\theta. Our detailed comparisons demonstrate that the finite width of the quasi-particles in the DQPM - which encodes the multiple partonic scattering - has little influence on the cross section for qQ→qQq Q \rightarrow q Q as well as gQ→gQg Q \rightarrow g Q scattering except close to thresholds. Thus when studying the dynamics of energetic heavy quarks in a QGP medium the spectral width of the degrees-of-freedom may be discarded. We have, furthermore, compared the cross sections from the DQPM with corresponding results from hard-thermal-loop (HTL) approaches. The HTL inspired models - essentially fixing the regulators by elementary vacuum cross sections and decay amplitudes instead of properties of the QGP at finite temperature - provide quite different results especially w.r.t. the temperature dependence of the qQqQ and gQgQ cross sections (in all settings). Accordingly, the transport properties of heavy quarks will be very different as a function of temperature when compared to DQPM results.Comment: 28 pages, 32 figure

    Transport coefficients of heavy quarks around TcT_c at finite quark chemical potential

    Full text link
    The interactions of heavy quarks with the partonic environment at finite temperature TT and finite quark chemical potential ÎŒq\mu_q are investigated in terms of transport coefficients within the Dynamical Quasi-Particle model (DQPM) designed to reproduce the lattice-QCD results (including the partonic equation of state) in thermodynamic equilibrium. These results are confronted with those of nuclear many-body calculations close to the critical temperature TcT_c. The hadronic and partonic spatial diffusion coefficients join smoothly and show a pronounced minimum around TcT_c, at ÎŒq=0\mu_q=0 as well as at finite ÎŒq\mu_q. Close and above TcT_c its absolute value matches the lQCD calculations for ÎŒq=0\mu_q=0. The smooth transition of the heavy quark transport coefficients from the hadronic to the partonic medium corresponds to a cross over in line with lattice calculations, and differs substantially from perturbative QCD (pQCD) calculations which show a large discontinuity at TcT_c. This indicates that in the vicinity of TcT_c dynamically dressed massive partons and not massless pQCD partons are the effective degrees-of-freedom in the quark-gluon plasma.Comment: 4 pages, 4 figure

    On- and off-shell heavy quark transport properties in the quark-gluon plasma

    Get PDF

    Charm production in the Parton-Hadron-String-Dynamics (PHSD) model

    Get PDF

    Heavy flavor in relativistic heavy-ion collisions

    Full text link
    We study charm production in ultra-relativistic heavy-ion collisions by using the Parton-Hadron-String Dynamics (PHSD) transport approach. The initial charm quarks are produced by the PYTHIA event generator tuned to fit the transverse momentum spectrum and rapidity distribution of charm quarks from Fixed-Order Next-to-Leading Logarithm (FONLL) calculations. The produced charm quarks scatter in the quark-gluon plasma (QGP) with the off-shell partons whose masses and widths are given by the Dynamical Quasi-Particle Model (DQPM), which reproduces the lattice QCD equation-of-state in thermal equilibrium. The relevant cross sections are calculated in a consistent way by employing the effective propagators and couplings from the DQPM. Close to the critical energy density of the phase transition, the charm quarks are hadronized into DD mesons through coalescence and/or fragmentation. The hadronized DD mesons then interact with the various hadrons in the hadronic phase with cross sections calculated in an effective lagrangian approach with heavy-quark spin symmetry. The nuclear modification factor RAAR_{AA} and the elliptic flow v2v_2 of D0D^0 mesons from PHSD are compared with the experimental data from the STAR Collaboration for Au+Au collisions at sNN\sqrt{s_{NN}} =200 GeV and to the ALICE data for Pb+Pb collisions at sNN\sqrt{s_{NN}} =2.76 TeV. We find that in the PHSD the energy loss of DD mesons at high pTp_T can be dominantly attributed to partonic scattering while the actual shape of RAAR_{AA} versus pTp_T reflects the heavy-quark hadronization scenario, i.e. coalescence versus fragmentation. Also the hadronic rescattering is important for the RAAR_{AA} at low pTp_T and enhances the DD-meson elliptic flow v2v_2.Comment: 8 pages, 3 figures, to be published in the Proceedings of the 15th International Conference on Strangeness in Quark Matter (SQM2015), 6-11 July 2015, JINR, Dubna, Russi

    Heavy-quark dynamics in a hot and dense medium

    Get PDF

    Heavy quark dynamics in vacuum and in the quark gluon plasma (QGP)

    Get PDF

    Heavy-flavor production and medium properties in high-energy nuclear collisions --What next?

    Get PDF
    Open and hidden heavy-flavor physics in high-energy nuclear collisions are entering a new and exciting stage towards reaching a clearer understanding of the new experimental results with the possibility to link them directly to the advancement in lattice Quantum Chromo-Dynamics (QCD). Recent results from experiments and theoretical developments regarding open and hidden heavy-flavor dynamics have been debated at the Lorentz Workshop Tomography of the Quark-Gluon Plasma with Heavy Quarks, which was held in October 2016 in Leiden, The Netherlands. In this contribution, we summarize identified common understandings and developed strategies for the upcoming five years, which aim at achieving a profound knowledge of the dynamical properties of the quark-gluon plasma
    corecore