194 research outputs found
Seasonal prevalence and determinants of food insecurity in Iqaluit, Nunavut
Background: Food insecurity is an ongoing problem in the Canadian Arctic. Although most studies have focused on smaller communities, little is known about food insecurity in larger centres. Objectives: This study aimed to estimate the prevalence of food insecurity during 2 different seasons in Iqaluit, the territorial capital of Nunavut, as well as identify associated risk factors. Design: A modified United States Department of Agriculture Food Security Survey was applied to 532 randomly selected households in September 2012 and 523 in May 2013. Chi-square tests and multivariable logistic regression were used to examine potential associations between food security and 9 risk factors identified in the literature. Results: In September 2012, 28.7% of surveyed households in Iqaluit were food insecure, a rate 3 times higher than the national average, but lower than smaller Inuit communities in Nunavut. Prevalence of food insecurity in September 2012 was not significantly different in May 2013 (27.2%). When aggregating results from Inuit households from both seasons (May and September), food insecurity was associated with poor quality housing and reliance on income support (p<0.01). Unemployment and younger age of the person in charge of food preparation were also significantly associated with food insecurity. In contrast to previous research among Arctic communities, gender and consumption of country food were not positively associated with food security. These results are consistent with research describing high food insecurity across the Canadian Arctic. Conclusion: The factors associated with food insecurity in Iqaluit differed from those identified in smaller communities, suggesting that experiences with, and processes of, food insecurity may differ between small communities and larger commercial centres. These results suggest that country food consumption, traditional knowledge and sharing networks may play a less important role in larger Inuit communities
Incorporating scale dependence in disease burden estimates:the case of human African trypanosomiasis in Uganda
The WHO has established the disability-adjusted life year (DALY) as a metric for measuring the burden of human disease and injury globally. However, most DALY estimates have been calculated as national totals. We mapped spatial variation in the burden of human African trypanosomiasis (HAT) in Uganda for the years 2000-2009. This represents the first geographically delimited estimation of HAT disease burden at the sub-country scale.Disability-adjusted life-year (DALY) totals for HAT were estimated based on modelled age and mortality distributions, mapped using Geographic Information Systems (GIS) software, and summarised by parish and district. While the national total burden of HAT is low relative to other conditions, high-impact districts in Uganda had DALY rates comparable to the national burden rates for major infectious diseases. The calculated average national DALY rate for 2000-2009 was 486.3 DALYs/100 000 persons/year, whereas three districts afflicted by rhodesiense HAT in southeastern Uganda had burden rates above 5000 DALYs/100 000 persons/year, comparable to national GBD 2004 average burden rates for malaria and HIV/AIDS.These results provide updated and improved estimates of HAT burden across Uganda, taking into account sensitivity to under-reporting. Our results highlight the critical importance of spatial scale in disease burden analyses. National aggregations of disease burden have resulted in an implied bias against highly focal diseases for which geographically targeted interventions may be feasible and cost-effective. This has significant implications for the use of DALY estimates to prioritize disease interventions and inform cost-benefit analyses
Indigenous Peoples’ Perceptions of Their Food System in the Context of Climate Change: A Case Study of Shawi Men in the Peruvian Amazon
Biodiversity and ecosystem conservation in the Amazon play a critical role in climate-change mitigation. However, institutional responses have had conflicted and complex relations with Indigenous peoples. There is a growing need for meaningful engagement with—and recognition of—the centrality of Indigenous peoples’ perceptions and understanding of the changes they are experiencing to inform successful and effective place-based adaptation strategies. To fill this gap, this study focuses on the value-based perspectives and pragmatic decision-making of Shawi Indigenous men in the Peruvian Amazon. We are specifically interested in their perceptions of how their food system is changing, why it is changing, its consequences, and how/whether they are coping with and responding to this change. Our results highlight that Shawi men’s agency and conscious envisioning of their future food system intersect with the effects of government policy. Shawi men perceive that the main driver of their food-system changes, i.e., less forest food, is self-driven population growth, leading to emotions of guilt and shame. During our study, they articulated a conscious belief that future generations must transition from forest-based to agricultural foods, emphasising education as central to this transition. Additionally, results suggest that the Peruvian government is indirectly promoting Shawi population growth through policies linking population size to improved service delivery, particularly education. Despite intentional Shawi moves to transition to agriculture, this results in a loss of men’s cultural identity and has mental-health implications, creating new vulnerabilities due to increasing climatic extremes, such as flooding and higher temperatures
Challenges of controlling sleeping sickness in areas of violent conflict: experience in the Democratic Republic of Congo
Human African trypanosomiasis (HAT), or sleeping sickness, is a fatal neglected tropical disease if left untreated. HAT primarily affects people living in rural sub-Saharan Africa, often in regions afflicted by violent conflict. Screening and treatment of HAT is complex and resource-intensive, and especially difficult in insecure, resource-constrained settings. The country with the highest endemicity of HAT is the Democratic Republic of Congo (DRC), which has a number of foci of high disease prevalence. We present here the challenges of carrying out HAT control programmes in general and in a conflict-affected region of DRC. We discuss the difficulties of measuring disease burden, medical care complexities, waning international support, and research and development barriers for HAT
Mapping global research on climate and health using machine learning (a systematic evidence map)
Climate change is already affecting health in populations around the world, threatening to undermine the past 50 years of global gains in public health. Health is not only affected by climate change via many causal pathways, but also by the emissions that drive climate change and their co-pollutants. Yet there has been relatively limited synthesis of key insights and trends at a global scale across fragmented disciplines. Compounding this, an exponentially increasing literature means that conventional evidence synthesis methods are no longer sufficient or feasible. Here, we outline a protocol using machine learning approaches to systematically synthesize global evidence on the relationship between climate change, climate variability, and weather (CCVW) and human health. We will use supervised machine learning to screen over 300,000 scientific articles, combining terms related to CCVW and human health. Our inclusion criteria comprise articles published between 2013 and 2020 that focus on empirical assessment of: CCVW impacts on human health or health-related outcomes or health systems; relate to the health impacts of mitigation strategies; or focus on adaptation strategies to the health impacts of climate change. We will use supervised machine learning (topic modeling) to categorize included articles as relevant to impacts, mitigation, and/or adaptation, and extract geographical location of studies. Unsupervised machine learning using topic modeling will be used to identify and map key topics in the literature on climate and health, with outputs including evidence heat maps, geographic maps, and narrative synthesis of trends in climate-health publishing. To our knowledge, this will represent the first comprehensive, semi-automated, systematic evidence synthesis of the scientific literature on climate and health
Population genetics of trypanosoma brucei rhodesiense: clonality and diversity within and between foci
African trypanosomes are unusual among pathogenic protozoa in that they can undergo their complete morphological life cycle in the tsetse fly vector with mating as a non-obligatory part of this development. Trypanosoma brucei rhodesiense, which infects humans and livestock in East and Southern Africa, has classically been described as a host-range variant of the non-human infective Trypanosoma brucei that occurs as stable clonal lineages. We have examined T. b. rhodesiense populations from East (Uganda) and Southern (Malawi) Africa using a panel of microsatellite markers, incorporating both spatial and temporal analyses. Our data demonstrate that Ugandan T. b. rhodesiense existed as clonal populations, with a small number of highly related genotypes and substantial linkage disequilibrium between pairs of loci. However, these populations were not stable as the dominant genotypes changed and the genetic diversity also reduced over time. Thus these populations do not conform to one of the criteria for strict clonality, namely stability of predominant genotypes over time, and our results show that, in a period in the mid 1990s, the previously predominant genotypes were not detected but were replaced by a novel clonal population with limited genetic relationship to the original population present between 1970 and 1990. In contrast, the Malawi T. b. rhodesiense population demonstrated significantly greater diversity and evidence for frequent genetic exchange. Therefore, the population genetics of T. b. rhodesiense is more complex than previously described. This has important implications for the spread of the single copy T. b. rhodesiense gene that allows human infectivity, and therefore the epidemiology of the human disease, as well as suggesting that these parasites represent an important organism to study the influence of optional recombination upon population genetic dynamics
Image guidance using 3D-ultrasound (3D-US) for daily positioning of lumpectomy cavity for boost irradiation
<p>Abstract</p> <p>Purpose</p> <p>The goal of this study was to evaluate the use of 3D ultrasound (3DUS) breast IGRT for electron and photon lumpectomy site boost treatments.</p> <p>Materials and methods</p> <p>20 patients with a prescribed photon or electron boost were enrolled in this study. 3DUS images were acquired both at time of simulation, to form a coregistered CT/3DUS dataset, and at the time of daily treatment delivery. Intrafractional motion between treatment and simulation 3DUS datasets were calculated to determine IGRT shifts. Photon shifts were evaluated isocentrically, while electron shifts were evaluated in the beam's-eye-view. Volume differences between simulation and first boost fraction were calculated. Further, to control for the effect of change in seroma/cavity volume due to time lapse between the 2 sets of images, interfraction IGRT shifts using the first boost fraction as reference for all subsequent treatment fractions were also calculated.</p> <p>Results</p> <p>For photon boosts, IGRT shifts were 1.1 ± 0.5 cm and 50% of fractions required a shift >1.0 cm. Volume change between simulation and boost was 49 ± 31%. Shifts when using the first boost fraction as reference were 0.8 ± 0.4 cm and 24% required a shift >1.0 cm. For electron boosts, shifts were 1.0 ± 0.5 cm and 52% fell outside the dosimetric penumbra. Interfraction analysis relative to the first fraction noted the shifts to be 0.8 ± 0.4 cm and 36% fell outside the penumbra.</p> <p>Conclusion</p> <p>The lumpectomy cavity can shift significantly during fractionated radiation therapy. 3DUS can be used to image the cavity and correct for interfractional motion. Further studies to better define the protocol for clinical application of IGRT in breast cancer is needed.</p
Civil conflict and sleeping sickness in Africa in general and Uganda in particular
Conflict and war have long been recognized as determinants of infectious disease risk. Re-emergence of epidemic sleeping sickness in sub-Saharan Africa since the 1970s has coincided with extensive civil conflict in affected regions. Sleeping sickness incidence has placed increasing pressure on the health resources of countries already burdened by malaria, HIV/AIDS, and tuberculosis. In areas of Sudan, the Democratic Republic of the Congo, and Angola, sleeping sickness occurs in epidemic proportions, and is the first or second greatest cause of mortality in some areas, ahead of HIV/AIDS. In Uganda, there is evidence of increasing spread and establishment of new foci in central districts. Conflict is an important determinant of sleeping sickness outbreaks, and has contributed to disease resurgence. This paper presents a review and characterization of the processes by which conflict has contributed to the occurrence of sleeping sickness in Africa. Conflict contributes to disease risk by affecting the transmission potential of sleeping sickness via economic impacts, degradation of health systems and services, internal displacement of populations, regional insecurity, and reduced access for humanitarian support. Particular focus is given to the case of sleeping sickness in south-eastern Uganda, where incidence increase is expected to continue. Disease intervention is constrained in regions with high insecurity; in these areas, political stabilization, localized deployment of health resources, increased administrative integration and national capacity are required to mitigate incidence. Conflict-related variables should be explicitly integrated into risk mapping and prioritization of targeted sleeping sickness research and mitigation initiatives
Whether weather matters: Evidence of association between in utero meteorological exposures and foetal growth among Indigenous and non-Indigenous mothers in rural Uganda
Pregnancy and birth outcomes have been found to be sensitive to meteorological variation, yet few studies explore this relationship in sub-Saharan Africa where infant mortality rates are the highest in the world. We address this research gap by examining the association between meteorological factors and birth weight in a rural population in southwestern Uganda. Our study included hospital birth records (n = 3197) from 2012 to 2015, for which we extracted meteorological exposure data for the three trimesters preceding each birth. We used linear regression, controlling for key covariates, to estimate the timing, strength, and direction of meteorological effects on birth weight. Our results indicated that precipitation during the third trimester had a positive association with birth weight, with more frequent days of precipitation associated with higher birth weight: we observed a 3.1g (95% CI: 1.0–5.3g) increase in birth weight per additional day of exposure to rainfall over 5mm. Increases in average daily temperature during the third trimester were also associated with birth weight, with an increase of 41.8g (95% CI: 0.6–82.9g) per additional degree Celsius. When the sample was stratified by season of birth, only infants born between June and November experienced a significant associated between meteorological exposures and birth weight. The association of meteorological variation with foetal growth seemed to differ by ethnicity; effect sizes of meteorological were greater among an Indigenous subset of the population, in particular for variation in temperature. Effects in all populations in this study are higher than estimates of the African continental average, highlighting the heterogeneity in the vulnerability of infant health to meteorological variation in different contexts. Our results indicate that while there is an association between meteorological variation and birth weight, the magnitude of these associations may vary across ethnic groups with differential socioeconomic resources, with implications for interventions to reduce these gradients and offset the health impacts predicted under climate change
A Community-Based Approach to Integrating Socio, Cultural and Environmental Contexts in the Development of a Food Database for Indigenous and Rural Populations: The Case of the Batwa and Bakiga in South-Western Uganda
Comprehensive food lists and databases are a critical input for programs aiming to alleviate undernutrition. However, standard methods for developing them may produce databases that are irrelevant for marginalised groups where nutritional needs are highest. Our study provides a method for identifying critical contextual information required to build relevant food lists for Indigenous populations. For our study, we used mixed-methods study design with a community-based approach. Between July and October 2019, we interviewed 74 participants among Batwa and Bakiga communities in south-western Uganda. We conducted focus groups discussions (FGDs), individual dietary surveys and markets and shops assessment. Locally validated information on foods consumed among Indigenous populations can provide results that differ from foods listed in the national food composition tables; in fact, the construction of food lists is influenced by multiple factors such as food culture and meaning of food, environmental changes, dietary transition, and social context. Without using a community-based approach to understanding socio-environmental contexts, we would have missed 33 commonly consumed recipes and foods, and we would not have known the variety of ingredients’ quantity in each recipe, and traditional foraged foods. The food culture, food systems and nutrition of Indigenous and vulnerable communities are unique, and need to be considered when developing food lists
- …