17 research outputs found

    Biodegradation of the fuel oxgenate methyl tert-butyl ether in a fluidized bed bioreactor

    Get PDF
    Industrialization, increasing motorization and rapid urbanization have led to extensive soil and groundwater contamination. The main pollutants are fuel hydrocarbons and various gasoline additives. Microbial bioremediation is a cost-effective and sustainable way to promote the remediation of affected sites. Our experiments focused on testing key parameters of a universal and promising biological treatment technology, using a lab-scale fluidized bed bioreactor and a previously isolated bacterial consortium. The aim of our work was to test our setup and provide data for the technological design and optimization of field-scale bioreactors

    Ultraviolet-B induced phototropism in Arabidopsis seedlings and inflorescence stems

    Get PDF
    Ultraviolet-B radiation (UV-B - 280-315nm) was only recently described as a phototropism-inducing type of radiation. We have identified that phototropic growth towards UV-B of Arabidopsis hypocotyls and inflorescence stems are both regulated by the same photoreceptor pathways but display a shift in dominance during plant development. The phototropin pathway is dominant in etiolated seedlings (Vanhaelewyn et al., 2016a), while the UVR8 pathway is predominant in inflorescence stems. The role of key-players in the UVR8 pathway, such as HY5 and HYH has been evaluated for their importance in this phototropic response. Unilaterally UV-B irradiated inflorescence stem tissue demonstrates a lateral UVR8-mediated signal gradient. In addition, the function of UVR8 in different cell types was validated by use of cell type specific complementation lines of UVR8 in a uvr8-6 mutant background. This reveals that UVR8 signaling is important in various cell types within the inflorescence stem. As UV-B is known to affect plant hormones (Vanhaelewyn et al., 2016b), we investigated their involvement in this phototropic response. By means of reporter line analysis, mutant analysis, gene expression assays and pharmacological assays, we designate a role for both gibberellins and auxins to UV-B induced phototropism of Arabidopsis inflorescence stems. These combined data provide a mechanistic framework for UV-B induced phototropism

    UVR8-dependent reporters reveal spatial characteristics of signal spreading in plant tissues

    Get PDF
    The UV Resistance Locus 8 (UVR8) photoreceptor controls UV-B mediated photomorphogenesis in Arabidopsis. The aim of this work is to collect and characterize different molecular reporters of photomorphogenic UV-B responses. Browsing available transcriptome databases, we identified sets of genes responding specifically to this radiation and are controlled by pathways initiated from the UVR8 photoreceptor. We tested the transcriptional changes of several reporters and found that they are regulated differently in different parts of the plant. Our experimental system led us to conclude that the examined genes are not controlled by light piping of UV-B from the shoot to the root or signalling molecules which may travel between different parts of the plant body but by local UVR8 signalling. The initiation of these universal signalling steps can be the induction of Elongated Hypocotyl 5 (HY5) and its homologue, HYH transcription factors. We found that their transcript and protein accumulation strictly depends on UVR8 and happens in a tissue autonomous manner. Whereas HY5 accumulation correlates well with the UVR8 signal across cell layers, the induction of flavonoids depends on both UVR8 signal and a yet to be identified tissue-dependent or developmental determinant

    Progressive alterations in ultraviolet-B induced phototropism during Arabidopsis development

    Get PDF
    Low fluence rate ultraviolet-B radiation (280-315 nm) substantially affects plant morphology. Numerous UV-B induced morphological adaptations in Arabidopsis are ascribed to the UV-B specific photoreceptor UV RESISTANCE LOCUS 8 (UVR8). Well documented examples are shorter petioles and shorter stems. Alterations are also observed at the cellular level such as changes in cell elongation, division and differentiation. Notwithstanding this extensive knowledge of UV-B responses, the mechanisms by which UV-B radiation controls plant architecture are poorly understood. Our recent research in Arabidopsis revealed that unilateral narrow-band UV-B radiation can induce reorientation of etiolated hypocotyls through UVR8 mediated signaling. This response is triggered by unilateral radiation of wavelengths shorter than 340 nm and is temporally distinct from phototropin-mediated phototropic bending. Analysis of the kinetics of plant reorientation allowed us to quantify the relative contribution of UVR8 and phototropins in steering this UV-B induced phototropic movement of etiolated hypocotyls. These data indicate that in etiolated seedlings, phototropins are more sensitive to UV-B for regulating phototropism than UVR8 and therefore mask the effect of UVR8. Phototropin signaling under UV-B is mechanistically similar to that in blue light, involving phototropin autophosphorylation and NPH3 dephosphorylation. Furthermore, the negative feedback controlled by REPRESSOR OF UV-B PHOTOMORPHOGENESIS prevents UVR8-mediated fast phototropin-dependent bending. The UVR8-phototropin relationship described for etiolated seedlings is not universally applicable. We found that the main photoreceptor for UV-B-induced phototropism in inflorescence stems is UVR8, with a less significant role for phototropins. The contribution of UVR8 expressed in different cell layers to this response is currently being examined. Based on pharmacological assays, mutant analysis and reporter lines, this shifting role of UVR8 and phototropins during plant development will be presented and discussed

    Timely removal of exogenous cytokinin and the prevention of auxin transport from the shoot to the root affect the regeneration potential of Arabidopsis roots

    Get PDF
    In vitro regeneration of Arabidopsis from roots is generally achieved via indirect organogenesis. First, transdifferentiation of lateral root primordia to calli is achieved by a balanced auxin-to-cytokinin ratio that is followed by the induction of shoot meristem formation using a high cytokinin level. Here we demonstrate that if the root explants were transferred onto a hormone-free medium after a transient (4-days) cytokinin treatment, embryogenic marker genes (LEC1, LEC2, FUS3) started to be expressed. App. 50% of the regeneration foci developed into plantlets with trichome-less cotyledon-like leaves. Moreover, the somatic embryogenesis defective lec1 mutant could regenerate only shoots with trichome-bearing leaves under this condition. Based on these observations, the mixed accomplishment of shoot organogenesis and somatic embryogenesis is hypothesized in the Arabidopsis root explants cultured under hormone-free conditions following cytokinin induction. Using whole seedlings instead of root explants in the same experimental set up, no regenerates were formed on the roots. Applying the auxin transport inhibitor TIBA to the root-to-shoot junction of the seedlings, the regeneration ability of the root could be restored. The observations indicate that shoot-derived endogenous auxin blocks the cytokinin-induced regeneration process in the roots of whole seedlings. The expression of the wound-induced transcription factor WIND1 could be detected in the roots of unwounded seedlings if the shoot-to-root auxin transport was inhibited. Manipulating the exogenous cytokinin level together with the endogenous shoot-to-root auxin transport therefore could mimic the effect of wounding (removal of shoot) on plant regeneration from roots. Key message Transferring root explants from high cytokinin to hormone-free conditions resulted in the expression of embryogenic markers. Inhibiting the shoot-to-root auxin transport had similar effect on regeneration as wounding

    UVR8 mediated spatial differences as a prerequisite for UV-B induced inflorescence phototropism

    Get PDF
    In Arabidopsis hypocotyls, phototropins are the dominant photoreceptors for the positive phototropism response towards unilateral ultraviolet-B (UV-B) radiation. We report a stark contrast of response mechanism with inflorescence stems with a central role for UV RESISTANCE LOCUS 8 (UVR8). The perception of UV-B occurs mainly in the epidermis and cortex with a lesser contribution of the endodermis. Unilateral UV-B exposure does not lead to a spatial difference in UVR8 protein levels but does cause differential UVR8 signal throughout the stem with at the irradiated side 1) increase of the transcription factor ELONGATED HYPOCOTYL 5 (HY5), 2) an associated strong activation of flavonoid biosynthesis genes and flavonoid accumulation, 3) increased GA2oxidase expression, diminished gibberellin1 levels and accumulation of DELLA protein REPRESSOR OF GA1 (RGA) and, 4) increased expression of the auxin transport regulator, PINOID, contributing to local diminished auxin signalling. Our molecular findings are in support of the Blaauw theory (1919), suggesting that differential growth occurs trough unilateral photomorphogenic growth inhibition. Together the data indicate phototropin independent inflorescence phototropism through multiple locally UVR8-regulated hormone pathways

    Differential UVR8 Signal across the Stem Controls UV-B-Induced Inflorescence Phototropism

    Get PDF
    In the course of evolution, plants have developed mechanisms that orient their organs toward the incoming light. At the seedling stage, positive phototropism is mainly regulated by phototropin photoreceptors in blue and UV wavelengths. Contrasting with this, we report that UV RESISTANCE LOCUS8 (UVR8) serves as the predominant photoreceptor of UVB–induced phototropic responses in Arabidopsis (Arabidopsis thaliana) inflorescence stems. We examined the molecular mechanisms underlying this response and our findings support the Blaauw theory (Blaauw, 1919), suggesting rapid differential growth through unilateral photomorphogenic growth inhibition. UVR8-dependent UV-B light perception occurs mainly in the epidermis and cortex, but deeper tissues such as endodermis can also contribute. Within stems, a spatial difference of UVR8 signal causes a transcript and protein increase of transcription factors ELONGATED HYPOCOTYL5 (HY5) and its homolog HY5 HOMOLOG at the UV-B–exposed side. The irradiated side shows (1) strong activation of flavonoid synthesis genes and flavonoid accumulation; (2) increased gibberellin (GA)2-oxidase expression, diminished GA1 levels, and accumulation of the DELLA protein REPRESSOR OF GA1; and (3) increased expression of the auxin transport regulator PINOID, contributing to diminished auxin signaling. Together, the data suggest a mechanism of phototropin-independent inflorescence phototropism through multiple, locally UVR8-regulated hormone pathways.Fil: Vanhaelewyn, Lucas. University of Ghent; BélgicaFil: Viczián, András. Institute of Plant Biology, Biological Research Centre; HungríaFil: Prinsen, Els. Universiteit Antwerp; BélgicaFil: Bernula, Péter. Institute of Plant Biology, Biological Research Centre; Hungría. University of Szeged; HungríaFil: Serrano, Alejandro Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Provincia de Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Universidad Nacional de Cuyo. Instituto Argentino de Investigaciones de las Zonas Áridas; ArgentinaFil: Arana, Maria Veronica. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Patagonia Norte. Estación Experimental Agropecuaria San Carlos de Bariloche. Instituto de Investigaciones Forestales y Agropecuarias Bariloche. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; ArgentinaFil: Ballare, Carlos Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Biotecnológicas; ArgentinaFil: Nagy, Ferenc. Institute of Plant Biology, Biological Research Centre; HungríaFil: Van Der Straeten, Dominique. University of Ghent; BélgicaFil: Vandenbussche, Filip. University of Ghent; Bélgic

    Timely removal of exogenous cytokinin and the prevention of auxin transport from the shoot to the root affect the regeneration potential of Arabidopsis roots

    Get PDF
    In vitro regeneration of Arabidopsis from roots is generally achieved via indirect organogenesis. First, transdifferentiation of lateral root primordia to calli is achieved by a balanced auxin-to-cytokinin ratio that is followed by the induction of shoot meristem formation using a high cytokinin level. Here we demonstrate that if the root explants were transferred onto a hormone-free medium after a transient (4-days) cytokinin treatment, embryogenic marker genes (LEC1, LEC2, FUS3) started to be expressed. App. 50% of the regeneration foci developed into plantlets with trichome-less cotyledon-like leaves. Moreover, the somatic embryogenesis defective lec1 mutant could regenerate only shoots with trichome-bearing leaves under this condition. Based on these observations, the mixed accomplishment of shoot organogenesis and somatic embryogenesis is hypothesized in the Arabidopsis root explants cultured under hormone-free conditions following cytokinin induction. Using whole seedlings instead of root explants in the same experimental set up, no regenerates were formed on the roots. Applying the auxin transport inhibitor TIBA to the root-to-shoot junction of the seedlings, the regeneration ability of the root could be restored. The observations indicate that shoot-derived endogenous auxin blocks the cytokinin-induced regeneration process in the roots of whole seedlings. The expression of the wound-induced transcription factor WIND1 could be detected in the roots of unwounded seedlings if the shoot-to-root auxin transport was inhibited. Manipulating the exogenous cytokinin level together with the endogenous shoot-to-root auxin transport therefore could mimic the effect of wounding (removal of shoot) on plant regeneration from roots. Key message Transferring root explants from high cytokinin to hormone-free conditions resulted in the expression of embryogenic markers. Inhibiting the shoot-to-root auxin transport had similar effect on regeneration as wounding
    corecore