19,182 research outputs found
Rate constant for deuterium atom recombination calculated by the orbiting resonance theory
Resonance theory for three body recombination kinetics for calculating recombination rate constant of deuterium ato
Do Endowments Predict the Location of Production? Evidence from National and International Data
Examining the relationship between factor endowments and production patterns using international and Japanese regional data, we provide the first empirical confirmation of Ethier's correlation approach to the Rybczynski theorem. Moreover, we find evidence of substantial production indeterminacy. Prediction errors are six to thirty times larger for goods traded relatively freely. A compelling explanation of this phenomenon is the existence of more goods than factors in the presence of trade costs. This result implies that regressions of trade or output on endowments have weak theoretical foundations. Furthermore, since errors are largest in data sets where trade costs are small, we explain why the common methodology of imputing trade barriers from regression residuals often leads to backwards results.
The Detailed Chemical Abundance Patterns of M31 Globular Clusters
We present detailed chemical abundances for 20 elements in 30
globular clusters in M31. These results have been obtained using high
resolution (24,000) spectra of their integrated
light and analyzed using our original method. The globular clusters have
galactocentric radii between 2.5 kpc and 117 kpc, and therefore provide
abundance patterns for different phases of galaxy formation recorded in the
inner and outer halo of M31. We find that the clusters in our survey have a
range in metallicity of [Fe/H]. The inner halo clusters cover
this full range, while the outer halo globular clusters at R20 kpc have a
small range in abundance of [Fe/H]. We also measure abundances
of alpha, r- and s-process elements. These results constitute the first
abundance pattern constraints for old populations in M31 that are comparable to
those known for the Milky Way halo.Comment: XII International Symposium on Nuclei in the Cosmos August 5-12, 2012
Cairns, Australia. To appear in Proceedings of Scienc
Dynamic autonomous intelligent control of an asteroid lander
One of the future flagship missions of the European Space Agency (ESA) is the asteroid sample return mission Marco-Polo. Although there have been a number of past missions to asteroids, a sample has never been successfully returned. The return of asteroid regolith to the Earth's surface introduces new technical challenges. This paper develops attitude control algorithms for the descent phase onto an asteroid in micro-gravity conditions and draws a comparison between the algorithms considered. Two studies are also performed regarding the Fault Detection Isolation and Recovery (FDIR) of the control laws considered. The potential of using Direct Adaptive Control (DAC) as a controller for the surface sampling process is also investigated. Use of a DAC controller incorporates increased levels of robustness by allowing realtime variation of control gains. This leads to better response to uncertainties encountered during missions
Globular Cluster Abundances from High-Resolution, Integrated-Light Spectroscopy. II. Expanding the Metallicity Range for Old Clusters and Updated Analysis Techniques
We present abundances of globular clusters in the Milky Way and Fornax from
integrated light spectra. Our goal is to evaluate the consistency of the
integrated light analysis relative to standard abundance analysis for
individual stars in those same clusters. This sample includes an updated
analysis of 7 clusters from our previous publications and results for 5 new
clusters that expand the metallicity range over which our technique has been
tested. We find that the [Fe/H] measured from integrated light spectra agrees
to 0.1 dex for globular clusters with metallicities as high as
[Fe/H]=, but the abundances measured for more metal rich clusters may be
underestimated. In addition we systematically evaluate the accuracy of
abundance ratios, [X/Fe], for Na I, Mg I, Al I, Si I, Ca I, Ti I, Ti II, Sc II,
V I, Cr I, Mn I, Co I, Ni I, Cu I, Y II, Zr I, Ba II, La II, Nd II, and Eu II.
The elements for which the integrated light analysis gives results that are
most similar to analysis of individual stellar spectra are Fe I, Ca I, Si I, Ni
I, and Ba II. The elements that show the greatest differences include Mg I and
Zr I. Some elements show good agreement only over a limited range in
metallicity. More stellar abundance data in these clusters would enable more
complete evaluation of the integrated light results for other important
elements.Comment: Accepted for publication in ApJ, 37 pages, 13 tables, 29 figure
Weak Lensing Determination of the Mass in Galaxy Halos
We detect the weak gravitational lensing distortion of 450,000 background
galaxies (20<R<23) by 790 foreground galaxies (R<18) selected from the Las
Campanas Redshift Survey (LCRS). This is the first detection of weak lensing by
field galaxies of known redshift, and as such permits us to reconstruct the
shear profile of the typical field galaxy halo in absolute physical units
(modulo H_0), and to investigate the dependence of halo mass upon galaxy
luminosity. This is also the first galaxy-galaxy lensing study for which the
calibration errors are negligible. Within a projected radius of 200 \hkpc, the
shear profile is consistent with an isothermal profile with circular velocity
164+-20 km/s for an L* galaxy, consistent with typical disk rotation at this
luminosity. This halo mass normalization, combined with the halo profile
derived by Fischer et al (2000) from lensing analysis SDSS data, places a lower
limit of (2.7+-0.6) x 10^{12}h^{-1} solar masses on the mass of an L* galaxy
halo, in good agreement with satellite galaxy studies. Given the known
luminosity function of LCRS galaxies, and the assumption that for galaxies, we determine that the mass within 260\hkpc of normal
galaxies contributes to the density of the Universe (for
) or for . These lensing data suggest
that (95% CL), only marginally in agreement with the usual
Faber-Jackson or Tully-Fisher scaling. This is the most
complete direct inventory of the matter content of the Universe to date.Comment: 18 pages, incl. 3 figures. Submitted to ApJ 6/7/00, still no response
from the referee after four months
Fast quantum algorithm for numerical gradient estimation
Given a blackbox for f, a smooth real scalar function of d real variables,
one wants to estimate the gradient of f at a given point with n bits of
precision. On a classical computer this requires a minimum of d+1 blackbox
queries, whereas on a quantum computer it requires only one query regardless of
d. The number of bits of precision to which f must be evaluated matches the
classical requirement in the limit of large n.Comment: additional references and minor clarifications and corrections to
version
- …