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Abstract: One of the future flagship missions of the European Space Agency
(ESA) is the asteroid sample return mission Marco-Polo. Although there have
been a number of past missions to asteroids, a sample has never been success-
fully returned. The return of asteroid regolith to the Earth’s surface introduces
new technical challenges. This paper develops attitude control algorithms for
the descent phase onto an asteroid in micro-gravity conditions and draws a
comparison between the algorithms considered. Two studies are also performed
regarding the Fault Detection Isolation and Recovery (FDIR) of the control
laws considered. The potential of using Direct Adaptive Control (DAC) as a
controller for the surface sampling process is also investigated. Use of a DAC
controller incorporates increased levels of robustness by allowing realtime varia-
tion of control gains. This leads to better response to uncertainties encountered
during missions.
Keywords: autonomy, asteroid, direct adaptive control, fault detection isola-
tion and recovery

1 Introduction

A number of missions have been and are being conducted with the aim of study-
ing Near Earth Objects (NEO) such as asteroids and comets, e.g. Rosetta[1],
Deep-Impact[2], and Hayabusa[3]. A key aim is now to return a sample of the
constituent material from a NEO. ESA plans to achieve this goal as part of the
Marco-Polo mission.

Alongside asteroid and comet observation two of the previous missions also
carried landers with the aim of traversing across the asteroid surface. In the
case of Hayabusa this was the MINERVA mini-lander[4] intended to hop from
one location to the next on a ballistic trajectory using simple DC torquers for
attitude control. The second is the Rosetta mission and its lander Philae[5].
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Philae will take in situ measurments on the surface of the target comet with
descent attitude stabilisation performed using an internal reaction wheel with
cold jet thrusters available if the descent velocity become too large.

Due to the fact this is a new engineering problem that has never been accom-
plished before there are new technical challenges to be overcome. The key issues
are associated with guidance, navigation, and control (GNC) in micro-gravity
necessary for descent and landing. Also, sustained presence on the surface of
the NEO for the scientific phase to take place is required.

Other missions that draw parallel with this work are the lander descent
GNC for the Apollo lunar and Viking Mars programs. In the case of the Viking
lander there had to be fully autonomous descent and landing due to the large
distance between the lander and the ground station [6]. Currently, research is
being conducted into new forms of GNC for descent optimisation and trajectory
following such as light detection and ranging (LIDAR) GNC [7] [8] [9]. ESA has
recently built a specialised facility for testing such technologies [10] [11].

The first section of this paper deals with different methods for the attitude
control of a NEO asteroid lander based on the Technology Reference Study
(TRS) performed by EADS Astrium Ltd for the ESA Marco-Polo mission [12].
A comparison is drawn between different control methods and a discussion is
included to better understand the merits of each control algorithm.

The controllers will then be tested for their applicability to fault detection,
isolation and recovery (FDIR) under two failure scenarios. Firstly when the
mechanical properties of the lander leg changes (e.g. a stuck leg) and secondly
when one attitude thruster is assumed to fail completely. Comparison and
discussion of the merits of the controllers will be presented. It is shown that
there is a trade-off to be made between the controllers with regards fuel and
settling time required. In the case of a Direct Adaptive Control (DAC) method
it is demonstrated that this is the only controller capable of maintaining an
acceptable attitude during the failures.

Finally, a short study investigating the applicability of a DAC algorithm to
a hold-down scenario during sampling will be demonstrated and discussed. The
paper then demonstrates that DAC is remarkably effective in adaptively stabil-
ising these scenarios in spite of the broad range of unknown disturbances present.

2 Lander Representation

This paper focuses on control laws applied to the attitude stabilization of the
Marco Polo asteroid lander, adapted from the Astrium near earth asteroid sam-
ple return technology reference study (NEA-SR TRS) shown in figure 1. A
relatively basic three degree of freedom (3-DOF) representation of the lander
has been adopted for modeling purposes. Fig.2 depicts the layout of the lander
as it exists in the model, where the y-axis is positive out of the page. Each
thruster has a mean thrust value of 10 Newtons, and are the method of attitude
correction. The contractible spring constant is 1250 Newton/meter modeling
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the leg resistance to compression only. During the leg reaction to compression,
the extension constant is modeled by a ratchet constant, 22500 Newton/meter,
in addition to the existing spring. The natural length of each lander leg (before
deformation) is 1 meter and the mass of each leg is 7.3 kg. Laterally the length
of the lander base is 2.8 m and the mass of the base only is 985.4 kg. These
parameter values denoted in the Fig.2 are constant and are specified in table 1.

Figure 1: Astrium TRS lander. Courtesy of EADS Astrium ltd

Figure 2: Model lander schematic

Several assumptions have been made about the lander:

• The mass of the lander legs (mL) is much less than the mass of the lander
base (mB).
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Table 1: Lander properties
Parameter Value Unit
Thrust (T) 10 N

Spring Const (ks) 1250 N/m
Ratchet Const (kr) 22500 N/m

Leg Natural Length (LL) 1 m
Leg Stroke Length (Ls) 0.3 m

Base Length (LB) 2.8 m
Base Mass (mB) 985.4 kg
Leg Mass (mL) 7.3 kg

• The center of gravity (C.G.) of the lander lies at the mid lateral point of
the lander base.

• The lander base is rigid and does not deform.

• The lander legs are at 90 degrees to the base.

• The lander legs deform only in one axis, the z-axis in body axes.

The thruster layout associated with the lander is arranged in order to allocate
thrusters to specific axes. The thrusters are numbered 1-6 in Fig.2 where; 1 and
3 individually or together produce a moment in a positive sense around the y-
axis, 2 and 4 produce a moment in the negative sense, and 5 and 6 individually
produce a translation positively and negatively respectively in the x-axis.

3 Computational Model

The lander simulation consists of a number of ordinary differential equation
(ODE) solvers running at specific time intervals to integrate the relevant equa-
tions of motion in two dimensions using three degrees of freedom. Discontinuities
in the dynamics of the system, such as leg impacts, are defined heuristically and
captured using Matlab algorithms. All the equations of motion are defined in
body axes, where the axis system is defined in Fig.3. The dynamics of the model
allow the system to exist in three different states, requiring three different sets
of equations of motion and three separate ODE solvers. The first of these states
is free-flight. This is the state the lander will assume in descent or rebound
where neither leg has contact with the asteroid. This state has 14 parameters
to be solved for and these are specified in equation (1).
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Figure 3: Model axes definitions

ẍbase = Fxbase

mB
− qwbase − g sin(θ)

z̈base = Fzbase

mB
+ qubase + g cos(θ)

ẍL
leg = FxL

leg

mL
− qwL

leg − g sin(θ)

z̈L
leg = FzL

leg

mL
+ quL

leg + g cos(θ)

ẍR
leg = FxR

leg

mL
− qwR

leg − g sin(θ)

z̈R
leg = FzR

leg

mL
+ quR

leg + g cos(θ)
θ̈ = M

I

(1)

where q is the angular rate of the lander, u and w are the components of
velocity in the x-axis and z-axis respectively, and θ is the attitude error. M is
the resultant moment acting on the body and I is the moment of inertia of the
body.

The leg forces are defined such that the force differs depending on the sense
of the leg contraction or extension as described below:

FzL
leg =





ks.((zbase − zrest
base)− (zL

leg − zLrest
leg )),

żL
leg > 0

ks.((zbase − zrest
base)− (zL

leg − zLrest
leg ))

+kr.((zbase − zrest
base)− (zL

leg − zLrest
leg )

−(LL − LS)),
żL
leg ≤ 0
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FzR
leg =





ks.((zbase − zrest
base)− (zR

leg − zRrest
leg )),

żR
leg > 0

ks.((zbase − zrest
base)− (zR

leg − zRrest
leg ))+

kr.((zbase − zrest
base)− (zR

leg − zRrest
leg ))

−(LL − LS)),
żR
leg ≤ 0

where all the terms are in body axes. Terms defining a difference in the
z locations of the base (zbase) and legs (zL

leg and zR
leg) from the base (zrest

base)
and leg (zLrest

leg and zRrest
leg ) rest positions are multiplied by either the spring

constant only in compression, or the spring and ratchet constant in extension
to produce the leg forces that act on the system. During the extension phases
of the simulation (i.e. żleg ≤ 0) it is necessary to include a term that simulates
the maximum deformation of the spring/ratchet system (LL − LS , as defined
in table 1) so the extension forces only act when appropriate. The reason the
ratchet force acts solely in one direction is to reduce the leg extension and absorb
the kinetic energy from the decent of the lander when contact with the asteroid
surface is made.

The component of force in the z-axis, in body axes (Fzbase), acting on the
lander base is the sum of the components of forces currently in the left (FzL

leg)
and right (FzR

leg) legs in addition to the thruster forces (T):

Fzbase = FzL
leg + FzR

leg + T

The component of force in the x-axis, in body axes, acting on the lander
base is equal to the component of force in the x-axis, in body axes, acting on
the lander legs and is given by:

Fxbase = FxL
leg + FxR

leg + T

where FxL
leg = FxR

leg = 0 since the legs are perpendicular to the base.
The second dynamic state is when there is only one leg in contact with the

asteroid. This can be in a descent scenario or in the rebound ascent phase.
In this system there are 10 states to be solved for and can be interpreted as
equation (1) minus two of the equations corresponding to one of the legs, which
is in contact with the asteroid surface. In this case the resultant force on the
base Fzbase is defined differently as:

Fzbase =





(−ks.(zbase − zrest
base)) + Fzfree

leg ,

żbase > 0

(−ks.(zbase − zrest
base))

+(−kr.(zbase − zrest
base)) + Fzfree

leg ,

żbase ≤ 0

and the force of the free leg:
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Fzfree
leg =





ks.((zbase − zrest
base)− (zfree

leg − zFreeRest
leg )),

żfree
leg > 0

ks.((zbase − zrest
base)− (zfree

leg − zFreeRest
leg ))

+(−kr.((zbase − zrest
base)− (zfree

leg − zFreeRest
leg )))

−(LL − LS)),
żfree
leg ≤ 0

where the same analysis applies as before regarding the leg compression and
expansion in the case of the application of the ratchet. Here:

Fxbase = Fxfree
leg + T

where Fxfree
leg = 0 due to the legs being perpendicular to the base.

The third system state is when both lander legs are in contact with the
asteroid surface. In this system state there are 6 parameters to be solved for,
these are specified in equation (2).

ẍbase = Fxbase

mbase
− qwbase − g sin(θ)

z̈base = Fzbase

mbase
+ qubase + g cos(θ)

θ̈ = M
I

(2)

where the forces obey the usual conventions for application of the ratchet
force.

In all three cases M, the moment applied around the center of gravity of
the lander is defined by the difference in the forces in the legs and the distance
between them in addition to the moment produced by the control thrusters.

M = (FzL
leg − FzR

leg).LB + MT (3)

where MT is the moment produced by the thrusters.
The points at which the model switches between the set of dynamic equations

are defined heuristically. The descent or rebound scenarios terminate when
either of the z components of the legs in inertial axes equals the radius of the
asteroid. The descent phase in which one leg has contact finishes when the z
component of the other leg in inertial axes equals the radius of the asteroid. The
two leg contact phase ends when either; the rebound force in both legs is great
enough to overcome the weight of the entire lander, inducing a rebound, or the
lander finishes its transient response and comes to rest on the asteroid surface.
The initial rebound (one leg still in contact with the asteroid) phase ends when
the force acting on the leg still in contact with the asteroid is greater than the
weight of one leg. In any simulation if the attitude of the lander (θ), is small
(≤ 0.5 degrees) then the one leg descent and rebound phases are neglected and
the model moves onto the next two leg phase.
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The model continues in an iterative loop until the lander is at rest on the
surface of the asteroid or alternatively falls over on its side due to instability.
These processes are demonstrated in Fig.4; in Fig.4(a) a descent and one re-
bound can be seen starting from an initially vertical attitude, in Fig.4(b) the
effect of adding a one degree attitude error to the descent and rebound causes
a subsequent tumbling of the lander. In both cases there is no attitude control.
In Fig.4 the solid bold line indicates the center of mass of the base and the two
dashed lines indicate the feet positions during the simulation.

Figure 4: Example of descent and rebound

4 Controllers

4.1 Phase-Plane Control

The Phase-Plane (PP) controller that has been implemented here is an adapta-
tion of a similar control algorithm that was used in the Apollo Lunar Module
(LM) [6]. Fig.5 shows the logic for firing the thrusters. The parabolas in the
figure are the switch curves that determine when the thrusters are turned on
and off. During descent onto the asteroid surface the rate and the attitude of
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the lander are measured, and based on these measurements the thrusters are
turned on/off.

Figure 5: Phase plane switching logic

A relation is necessary to define the parabolas for the switching curves shown
in Fig.5. Four such curves are needed, two for defining the points that the
thrusters switch on and two that define the points that the thrusters switch off.
The curve definitions are given below (equation (4)) and they are denoted in
Fig.6.

Fire− = θ + θ̇2

2.N.θ̈Max
−DB

Fire+ = θ − θ̇2

2.N.θ̈Max
+ DB

Coast− = θ + θ̇2

2.N.θ̈Max
+ DB

Coast+ = θ − θ̇2

2.N.θ̈Max
−DB

(4)

where θ and θ̇ are the attitude and attitude rates respectively. N is the
number of thrusters firing. θ̈Max is the acceleration produced from one thruster
and DB is the magnitude of the dead-band.

The parameters specified in equation (4) will determine the shape of the
parabolas depicted in Fig.6. The performance of the controller is therefore
dominated by these parameters.

4.2 Potential Function Control

This controller uses the attitude and attitude rate of the lander to define an
artificial potential function. The aim is then to minimise this potential as quickly
as possible. This is done using Lyapunov’s second method.
The aim of Lyapunov’s second method is to guarantee the stability of a set of
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Figure 6: Phase plane

differential equations which describe a dynamical system. In physical terms,
this has been described by Kalman and Bertram [13] [14].

The general form of the artificial potential is:

V = f(θ, θ̇) (5)

The problem is to bring the lander to rest at some desired attitude so the
terms to be controlled are the Euler angle θ, and the body rate θ̇. The potential
function, as defined in Radice [15] will be:

V = VEULER + VBODY RATE (6)

The component of the potential function due to the Euler angles will take
the form of a quadratic polynomial function:

VEULER =
1
2
(θ − θDesired)n, n = 2, 4, 6, . . . (7)

where θDesired is the goal attitude. The potential function due to the body
rates will have a simpler form with the goal corresponding to null body rates:

VBODY RATE =
1
2
ωm, m = 2, 4, 6, . . . (8)

where ω (= [0 q 0]T , in this case) is the angular rate of the body.
The global potential, being the sum of the Euler and body rate components

will therefore take the form:

V =
1
2
(θ − θDesired)n +

1
2
ωm (9)
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To satisfy Lyapunov’s theorem, the rate of change of the potential V̇ must
be rendered negative definite.

Therefore, differentiating the potential leads to:

V̇ = n
2 (θ − θDesired)n−1.θ̇ + m

2 θ̇m−1θ̈

= n
2 (θ − θDesired)n−1.θ̇ + mM

2I θ̇m−1 (10)

which will be used to generate the control law. A possible control torque M
which will render V̇ negative definite is expressed by:

M = − θ̇.I

mθ̇m−1
.[2λθ̇ + n.(θ − θDesired)n−1] (11)

where λ is a positive definite shaping parameter for arbitrary m and n. When
the control torque is substituted into equation 10 the potential derivative then
takes the form:

V̇ = −λθ̇2 (12)

so that the control law that rotates the lander to the desired goal attitude
is available in analytical form. This solution to the control problem equates to
a proportional derivative (PD) controller for m=n=2.

4.3 Direct Adaptive Control

Robust controllers try to desensitise a control system to the uncertainties of the
plant. An adaptive controller aims to allow controller gains to vary continuously
allowing for uncertainty and therefore increasing system performance during
control implementation.
In [16], it was demonstrated that direct adaptive controllers can be applied
to nonlinear oscillators. In [17], the concept was further proven in the use of
electromagnetically controller oscillators and pneumatic cylinders. The concept
has also been applied in other areas [18] [19].
Here, a direct adaptive control law is presented that provides robust attitude
control of the asteroid lander. It is shown that the control law is a function of
known system parameters and while being independent of external disturbances.
DAC is therefore attractive for the asteroid lander problem since the mechanical
properties of the asteroid surface will be highly uncertain.

4.3.1 State Feedback for Uncertain Systems

Consider the linear systems

ẋ(t) = A.x(t) + B.u(t) + d (13)

with

A =
[

A0

a

]
,B =

[
0(nx−1)×1

b

]
, d =

[
0(nx−1)×1

d0

]
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where x(t) ∈ <nx , u(t) ∈ <nu , d ∈ <nx , A0 ∈ <(nx−1)×nx , a ∈ <1×nx , b,

d0 ∈ <, and b 6= 0. Define B0 =
[

0(nx−1)×1

sign(b)

]

The following result is proven in [16].

Theorem. Assume there exists Ks ∈ <nx such that As = A + B.Ks is asymp-
totically stable. Let R ∈ <nx×nx be positive semidefinite and assume (As, R) is
controllable. Let P ∈ <nx×nx be the positive-definite solution to the Lyapunov
equation 0 = AT

s .P + P.As + R. Finally, let Γ ∈ <nu×nu and Λ ∈ <nx×nx be
positive definite, and let λ > 0. Then the control law

u(t) = K(t).y(t) + φ(t), (14)

where

K̇(t) = −Γ.BT
0 .P.x(t).xT .Λ, (15)

φ̇(t) = −BT
0 .P.x(t).λ (16)

yields R.x(t) → 0 as t →∞ where K ∈ <nx .

Note that equation (15) and equation (16) require the solution P of the
Lyapunov equation 0 = As.P + P.As + R. Since b 6= 0, let Ks = 1

b (as − a),
where as ∈ <1×nx . It follows that

As = A + B.Ks =
[

A0

a

]
+

[
0
b

]
1
b (as − a) =

[
A0

as

]
.

Since as can be chosen arbitrarily, it follows that P can be determined
without knowledge of b or a. The only stipulation is that sign(b) must be
known to implement equation (15) and equation (16).

To illustrate the theorem, consider the case nx = 1 and let as < 0 and
R = −2as. Then P = 1, and equation (15) and equation (16) are given by:

K̇(t) = −(sign(b)).λ1.x
2(t), (17)

φ̇(t) = −(sign(b)).λ2.x(t) (18)

where λ1 = Λ/Γ and λ2 = λ. Note that equation (17) and equation (18)
yield x(t) → 0 as t →∞ for all λ1, λ2 > 0.

Next, consider the case nx = 2, and let A0 =
[

0 1
]
, p > 0, as1 < 0, as2 <

−p and

R =
[ −2pas1 0

0 −2p− 2as2

]

Then
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P =
[ −pas2 − as1 p

p 1

]

satisfies 0 = As.P +P.As +R and equation (15) and equation (16) are given by

K̇1(t) = −(sign(b)).[λ1px2
1(t)+

(λ1 + λ12p)x1(t)x2(t) + λ12x
2
2(t)]

(19)

K̇2(t) = −(sign(b)).[λ12px2
1(t)+

(λ12 + λ2p)x1(t)x2(t) + λ2x
2
2(t)]

(20)

φ̇(t) = −(sign(b)).λ3[px1(t) + x2(t)] (21)

where
[

λ1 λ12

λ12 λ2

]
= (1/Γ)Λ

is positive definite and λ3 = λ > 0. Note that equation (19-21) yield x(t) → 0
as t →∞ for all p, λ1, λ2, λ3 > 0 and for all λ12 such that λ2

12 < λ1λ2. Setting
λ12 = 0 for simplicity yields

K̇1(t) = −(sign(b))λ1[px2
1(t) + x1(t)x2(t)] (22)

K̇2(t) = −(sign(b))λ2[x2
2(t) + px1(t)x2(t)] (23)

φ̇(t) = −(sign(b)).λ3[px1(t) + x2(t)] (24)

The above theorem can be applied to the following general control problem.
Consider the nth-order linear system:

rn(t)− anrn−1(t)− · · · − a2ṙ(t)− a1r(t) = bu(t) (25)

with the requirement that r(t) approaches rdes without knowledge of a =
[a1 · · · an] and b, except for the sign of b. Defining the error signal x1(t) ,
r(t)− rdes and the state x = [x1 ẋ1 · · · xn−1

1 ]T , equation (25) becomes:

ẋ(t) = A.x(t) + B.u(t) +
[

0(n−1)×1

d0

]
(26)

where A =
[

A0

a

]
and d0 = −a1rdes, where A0 = [0(n−1)×1 Inx−1], a =

[a1 · · · an], and Inx−1 is the (nx-1) × (nx-1) identity matrix. Thus equation (26)
has the form of equation (13). Note that d0 is unknown since a1 is unknown.
Thus the controller in equation (14 - 16) can be used for the lander attitude
control problem.
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4.3.2 State Feedback for Lander Attitude Control

The theorem defined above can now be applied to the attitude control problem.
Consider the lander attitude dynamics modeled by:

θ̈(t) = M/I (27)

where and M is the sum of all the torques acting on the body, including the
control torque u(t) and the disturbing torque d which is defined by the moment
resultant on the lander as a result of a difference in the force acting on the base
from the individual legs. I is the moment of inertia of the body about the axis
of rotation, and so:

M = u + d (28)

The control objective is to require θ to approach θdes without knowledge of
d. Defining the error signal x1(t) = θ(t) − θdes and the state x =

[
x1 ẋ1

]T ,
equation (27) becomes:

ẋ(t) =
[

0 1
0 0

]
x(t) +

[
0
b

]
u(t) +

[
0
d

]
(29)

Now solving Lyapunov’s equation using the general solutions to R and P
maintaining As asymmetrically stable gives the variable control gains to the
problem as:

K̇1(t) = −(1.5θ2 + 2θθ̇) (30)

K̇2(t) = −(1.5θθ̇ + 2θ̇2) (31)

φ̇(t) = −(0.1θ + 10θ̇) (32)

This in turn leads to the implied control moment as:

u(t) = (K1θ + K2θ̇ + φ).I (33)

The advantage of using this control algorithm is due to the fact it can react
in real time to any disturbing moment, in this case d. Due to the unknown
composition of the asteroid the contact dynamics are unknown and the DAC
controller is best placed to deal with these uncertainties.

5 Descent in a Rotational Frame

The Macro-Polo lander will be required to land at a specified point on the
surface of the asteroid. A rotational reference [20] frame has been chosen for
kinematic modeling of the descent to ensure the lander remains in the correct
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lateral position during descent. This introduces an extra requirement on the
lander for lateral control during descent.
Fig.7 depicts the difference between an inertial and rotating frame of reference
during the lander descent. From an initial rotation position φ and with a con-
stant reference frame rotation rate ω = [0 q 0], the inertial frame will see the
lander spiral and the rotating frame will see the lander descend directly towards
the surface in a straight line. The spacing between the points on each line
represent equal time intervals.

Figure 7: Reference frame comparison

The outcome of this is the introduction of fictitious forces acting on the
lander as it descends in the rotating frame.

Ffict = −2mωsuθ + mω2R(t)uR (34)

where m is the mass of the lander, ω = [0 q 0], s is the descent velocity, R
is the radial position of the lander, and uR and uθ are unit vector in the radial
and tangential direction respectively.

To obtain straight line motion in the rotating frame, a force exactly opposite
to the fictitious force must be applied to reduce the net force on the lander to
zero, for straight line motion in agreement with the rotational frame. The
fictitious forces that must be nulled are the Coriolis force (first term in equation
(34)) and the centrifugal force (second term in equation (34)).

With respect to the lander model these two forces can be represented as:

FCOR = −2mω ×V (35)

FCEN = −mω × (ω ×P) (36)

where V = (u, 0, w) and P = (x, 0, z).
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The process of introducing these new forces will result in the lander appear-
ing to descend in a straight line towards the surface of the asteroid although in
reality it will curve around the surface of the asteroid with angular velocity ω.

Introducing a DAC control law for lateral displacement using the same prin-
ciples as for the rotational control maintains that the lander will be in the cor-
rect position as it approaches the asteroid surface. Drawing comparison with
equation (27) and equation (29) produces:

ẍ(t) = Tlat/(mB + 2.mL) (37)

and

ẋ(t) =
[

0 1
0 0

]
x(t) +

[
0
b

]
u(t) +

[
0
d

]
(38)

where, x = [x1 x2] = [ẋ x], Tlat is the lateral force produced by the thrusters,
mB +2.mL is the total spacecraft mass, x2(t) = x−xdes is the error signal and is
the displacement x from the desired landing location xdes. Following the earlier
analysis a similar control algorithm is produced:

K̇1(t) = −(1.5x2
2 + 2x2ẋ2) (39)

K̇2(t) = −(1.5x2ẋ2 + 2ẋ2
2) (40)

φ̇(t) = −(0.1x2 + 10ẋ2) (41)

Subsequently leading to the necessary lateral control thrust:

Tlat = (K1x2 + K2ẋ2 + φ).(mB + 2mL) (42)

With regards the lateral control the disturbance d in equation (38) is now
comprised of the coriolis and centrifugal forces defined in equation (35) and
equation (36) in addition to any translational forces that may be induced by
the control thrusters minimising the attitude error, due to the fact this is done
in body axes.

6 Results for Controlled Descent

Having a model and three controllers in place a comparative simulation can be
done to asses the performance of the controllers against one another. The first
step in doing so is to define a performance parameter that can be used as a
basis for comparison. The performance parameter selected in this instance is
the total impulse used by the lander system to bring the lander to rest on the
surface of the asteroid. Total impulse is defined as:

IT =
n∑

i=1

∆t.T (43)
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where ∆t is the integration step magnitude, T is the corresponding thrust
level at the integration interval and n is the number of integration steps. It is
now possible to develop a comparison between the three controllers.

The descents and rebounds will take place in a rotational frame of reference
as depicted in Fig.3 and the equations of motion will be those outline by equation
(1). Finally, a simple bounce alleviation algorithm is defined: if the attitude
of the lander is within a small error limit (θdes ± 0.5 degrees) and the vertical
velocity of the lander is negative (i.e. ascending) then two thrusters are fired in
a positive vertical sense (in body axes) to reduce any residual bounces.

Before a direct comparison can be made nominal values must be selected for
the controller constants in each controller. For the potential function controller
this is a single shaping parameter, λ, and the thruster threshold (0.1 Newtons).
The thruster threshold defines the lower limit of necessary demanded thrust
before the thruster is switched on, this eliminates any unwanted chattering by
the thrusters. For the Phase Plane controller there are two parameters: θ̈Max

and DB described earlier.
For the purpose of this comparison, for each lander descent scenario, the

control parameters have been optimised using a simple trial and error procedure.
Therefore, an approximate optimum value for the total impulse in each case has
been established.

There also exists a number of other scenario parameters. These are specified
below in table 2 and are common to all the lander descent simulations. This
data was supplied by Astrium Ltd for the Marco-Polo mission [12].

Table 2: Scenario parameters
Mass of Base (kg) 985.4
Mass of Leg (kg) 7.3

Inertia of Lander (kg.m2) 677
Gravitational Accel (m/s2) 0.000145

Asteroid rotational Rate (deg/sec) 0.013
Initial Inertial Position ([m,m]) [0,1000]

θDesired (rad) 0
Minimum Impulse Bit (sec) 0.005

Leg Stroke Length (m) 0.3
Asteroid Radius (m) 500

The scenarios selected for the comparison each have a differing starting at-
titude. In each case the lander starts at [0,1000]m as specified in table 2. The
lander initial attitude is then specified as 10, 20 or 30 degrees and permitted to
descend towards the asteroid.

Optimisation of the control parameters for each controller in each case gives
the values specified in table 3. In the case of the PF and DAC controllers a
thruster threshold is included to reduce chattering and is assigned to be 0.01
Newtons. In the case of the PP controller the dead band value is selected to
be 0.0025 radians. An optimal solution for the three initial states of the DAC
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controller were found to be: κ1(0) = 0.0, κ2(0) = −2.75 and φ1(0) = 0.0, for all
three initial attitude states again demonstrating the robustness of DAC.

Table 3: Controller optimised parameters
Initial Attitude PF PP

(deg) λ θ̈Max

10 1.8 0.0035
20 2.35 0.0035
30 2.8 0.0035

The values for total impulse calculated in the scenarios described above are
given in table 4. The interesting result that appears is when the Potential
Function controller corrects the 30 degree initial attitude error more efficiently
that the DAC algorithm. This result is explained by analysis of the transient
correction time necessary in the manoeuvre, given in table 5. It follows that
the DAC controller, in the 30 degree case, takes slightly longer than the actual
descent time of the lander to correct the error. Control is hence carried through
the contact phase and into the rebound resulting in a considerable increase in
impulse necessary.

Table 4: Total impulse for descent scenarios
PP PF DAC

Scenario Impulse Impulse Impulse
(N.sec) (N.sec) (N.sec)

Rot 14.08 5.98 1.79
θi = 100 Trans 272 647 183

Σ 286.08 652.98 184.79
Rot 18.05 8.26 4.86

θi = 200 Trans 290 666 195
Σ 308.05 674.26 199.86

Rot 21.56 19.07 21.67
θi = 300 Trans 311 685 241

Σ 332.56 704.07 262.67

A different result to that of the rotational control is found in the joint rota-
tional and translational study. Here, the thrusters are used to compensate for
the coriolis force and ensure a vertical descent. The magnitude of the impulse
required to control the lander in translational descent being largest for the po-
tential function controller and smallest for the direct adaptive controller with
the phase plane magnitude somewhere between the two results. As with the
rotational control each controller is capable of maintaining translational control
but the DAC algorithm is the most efficient.

The difference between the results for the two studies (rotational and trans-
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Table 5: Settling times for descent scenarios
Initial Settling Settling Settling

Attitude Time Time Time
(deg) (sec) (sec) (sec)

PP PF DAC
10 6.9 19.2 820
20 9.9 16.2 840
30 12.4 20.1 1010

lational) can be explained by the dynamics required to rectify the control error.
This time the error is the lateral displacement from the desired position. In
the attitude case the aim is to correct a step error input, but in the transla-
tional case the error is continually changing due to the continuous rotation of
the asteroid. The DAC algorithm is capable of reacting to both cases due to
a real-time change in its control parameters. The Phase-Plane and Potential
Function controllers contain constants and these are optimised to a specific sce-
nario, leading to a greater impulse as the time for the descent increases. An
example plot of a descent and rebound scenario can be seen in Fig.8. Here no
initial attitude error is included but the bounce alleviation algorithm can be
seen to be working efficiently. An attitude correction simulation can be seen in
Fig.9 - this is a detailed plot of the first 20 seconds of descent as in most descent
scenarios the attitude of the lander is corrected rapidly. The black frame in
Fig.9 are a representation of the lander.

Figure 8: Example of descent and rebound

7 FDIR Studies

Space science missions involving autonomous landing capabilities have many
unknown aspects. Examples of these are exact topological information of the
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Figure 9: Attitude correction

landing site and the composition of the asteroid upon which the landing is to
be made. If an unexpected event were to arise during descent or during science
operations on the asteroid it is necessary for the system to have the ability to
react. To this end it is desirable to have some degree of Fault detection, Isolation
and Recovery (FDIR) embedded into the system to minimize the chance of
mission failure [21].

7.1 Lander Leg Failures

The first of the studies into the FDIR properties of the three controllers is a
comparison of the ability of the controllers to recover from three differing leg
failure scenarios. Firstly one of the two legs is induced to fail by becoming
overly ’stiff’ with regards to the other leg. The failing leg is assumed to have
a doubling of the spring constant in that particular leg leading to a consequent
imbalance between the two legs. Similarly to the first case, the second failure
scenario is when one of the lander leg spring stiffness constants is half the other.
Finally, the third failure scenario is when one leg is artificially ’stuck’, where no
movement is permitted in this leg.

Ideally the lander is required to settle on the surface of the asteroid using
as little propellant as possible while maintaining a small attitude error. An
example of the initial descent, contact and first rebound phase of the scenario
is given in Fig.10. The insert shows a close up of the contact phase. Also, the
black frames show a representation of the attitude of the lander as the simulation
progresses. During contact the insert shows that the lander attitude increases
and the control law is capable of returning the lander to zero attitude error
before the next contact with the asteroid occurs.

The initial conditions for the simulations are the same as for the non-failure
scenarios. The lander simulation is started at a height of 500 m above the
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surface of a 500 m radius asteroid. The lander has an initial lateral velocity
corresponding to the rotational rate of the asteroid at a 1000 m radial distance.
The aim of the simulation is to land at rest with zero attitude and lateral
displacement error.

Figure 10: Scenario example using a conventional controller

For analysis there are two properties of the simulation that will be used for
comparison. As before the total impulse of the scenario will be used to compare
the propellant necessary to recover from each of the leg failures. Another prop-
erty of interest here is the maximum attitude that is induced by the leg failures.
This property is representative of the ability of the lander to maintain the nec-
essary track on the asteroid surface for such instrumentation as radar/LASER
altimetry [22] as this instrumentation will be positioned on the lander such that
it takes readings in the positive vertical body axis direction.

The results for the study are shown in table 6 and Fig.11 - 13, where the
contact dynamics are evident at approximately 880 s. The relative attributes of
the different controllers now begin to become more apparent. As was evident
with the two previous studies, without disturbances, qualitatively the algorithms
have inherent benefits/weaknesses. The DAC algorithm is in general the most
effective.

Evaluating the evolution of the attitude during the controlled descent demon-
strates the weaknesses of the phase plane and potential function controllers with
the maximum overshoots being larger that the DAC results. In all cases the
controllers are capable of maintaining control of the lander. However, an over-
shoot of over 90 degrees is clearly too extreme for the altimetry to continue to
function and hence the potential function and phase plane controllers may be
deemed to fail in some cases.
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Figure 11: θ for PF

Figure 12: θ for PP
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Table 6: Impulses for Leg Failure Scenarios
PP PF DAC

Scenario Impulse Impulse Impulse
(N.sec) (N.sec) (N.sec)

Rot 852 871 653
ks × 0.5 Trans 995 1942 810

Σ 1847 2813 1463
Rot 850 878 654

ks × 2 Trans 1237 2022 900
Σ 2115 2872 1554

Rot 2062 1767 1880
ks ≈ ∞ Trans 2623 6017 930

Σ 4686 7784 2810

Figure 13: θ for DAC

These large overshoots will also contribute to extra necessary translational
control. As the attitude of the lander increases any corrective control will con-
tribute to the height of the rebound. The higher this rebound the more time the
lander will spend correcting for translational errors leading to greater impulse
requirements.

7.2 Lander Thruster Failure

The second FDIR scenario to be investigated is when one of the thrusters used
for rotational control is failed. During this study we will consider two modes
of thruster failure. Firstly when one thruster (of the four) becomes inoperable
- this leaves only one thruster for control in one rotational sense and the usual
two thrusters for control in the opposing direction. Secondly, the case where
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one thruster continuously fires - leaving the lander in a continual spin unless
suitable corrective thrust is applied. Referring to Fig.2 it will be thruster 1 that
will be assumed to fail in both cases. A comparison of the three controllers leads
to an another insight into the FDIR capabilities.

Thruster 1 is failed and a study similar to that described in section 7.1 is
performed. The same initial conditions and constants are used for both the
studies, although only the 10 degree initial attitude case is under investigation
here.

Tables 7 and 8 show a comparison of the impulse and settling times required
for this failure induced study. Interesting results appear in the tables. It appears
that there is no large apparent change in the magnitude of impulse required to
control the lander, indeed in the cases of all control algorithms there is no
significant gain to be made.

Table 7: Total impulse for thruster failures
Initial Total Total Total

Attitude Impulse Impulse Impulse
(10 deg) (N.sec) (N.sec) (N.sec)

PP PF DAC
No Failure 14.078 5.98 1.7898
Off Failure 14.299 5.84 1.461
On Failure 14.418 6.16 2.005

In table 7 the impulse used by the thruster which is continuously firing has
been neglected so an easier comparison can be drawn. The numerical values for
the impulse for the continuously firing thruster in the three simulation are: PP
- 8923 [N.sec], PF - 8957 [N.sec], DAC - 8998 [N.sec].

Table 8: Settling times for thruster failures
Initial Settling Settling Settling

Attitude Time Time Time
(10 deg) (sec) (sec) (sec)

PP PF DAC
No Failure 6.9 19.2 820
Off Failure 10.1 21.1 850
On Failure 10.3 21.0 847

An explanation for these slight changes in impulse can be attributed to the
model being a freely rotating rigid body with no resistance to rotation. The
smaller thrust induced by the failure allows fine-tuning of the attitude to be
done easier, although over a slightly longer time period. Both these traits can be
seen on analysis of Fig.14 that depicts the DAC attitude error. Here the longer
settling times are associated with smaller individual error correcting impulses.

The increase in settling time can be seen in Fig.15 that depicts the attitude
error for each of the failure scenarios during the course of the potential function
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decrease. This increase in settling time in the off failure case is due to only one
thruster being available for negative rotation. It is then evident that the on
failure case only starts to differ from the no failure case when positive rotation
is required. Due to the continuous negative thruster failure the result differs
slightly when in the positive rotational sense.

Figure 14: Attitude error for DAC

Figure 15: Attitude error for potential function

Finally to explain the slight increase in impulse and settling time in the
phase-plane cases Fig.16 shows the attitude error. The longer time periods
spent passing each end of the dead-band accompanied by the longer settling
time lead to the total impulse being slightly larger.
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Figure 16: Attitude error for phase-plane

8 Sampling Study

In addition to the attitude/rotational control and FDIR studies performed
above, an additional study has been performed to indicate propellant gains
that can be made during the asteroid sampling process by adopting a DAC
algorithm. The control force in this instance is intended to be used as a alterna-
tive mechanism for maintaining contact with the asteroid during the sampling
process. The proposed method for maintaining contact with the surface is a
continuous thrust towards the asteroid using two or more cold gas thrusters
[23].

The aim of this simulation is to stabilise the lander at the stable position the
lander rests at after descent. Any deviation from this desired vertical location
induces an error into the control law and this error drives the thrusters. A
schematic of the system under analysis is given in Fig.17.

To model the unknown composition of the asteroid a varying reaction drill
force is introduced. The maximum reaction force is limited at ten times the
weight of the lander base. Also, the reacting force is permitted to vary its form;
firstly the reaction force follows a sinusoidal path from maximum to zero and re-
turn, then an intermittent pulsing force with discontinuous steps from maximum
to zero force is introduced. By doing this most of the possible surface materials
that may be encountered are modeled. In these cases: a solid rock (constant
force), a porous material (sinusoid force), and a solid with voids (pulsed force).

Visualization of the control process is demonstrated with a plot of the re-
quired reaction force in Fig.18(a) with a plot of the produced thrust in Fig.18(b)
below. The impulse required for this simulation is given in table 9 alongside the
theoretical impulse that would be required for the base-line approach.

Evidently the impulse required to stabilise the lander is much less using
the DAC algorithm compared to the classical approach. The reason for this
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becomes apparent on analysis of Fig.18. Due to the varying type of reaction
force that is encountered during the sampling process it is not always necessary
to continually counteract the reaction force. The DAC algorithm is capable of
selecting the appropriate times when a control thrust is not needed, leading to
savings in the total impulse and required propellant mass.

Figure 17: Sampling

Figure 18: Reaction force (a), thrust force (b)

9 Conclusions

The different studies conducted in this paper demonstrate the relative advan-
tages to be gained from appropriate selection of controllers. Throughout the
paper the DAC method of control continually out performs in all areas except
that of reaching a settled state in a small time period. However, the argument
for the decrease in impulse required for each of these studies implying weight
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Table 9: Total impulse for stabilization
Classical DAC

Total
Impulse 600 46
(N.sec)

savings in the overall propellant budget required for mission greatly outweighs
this.

This paper demonstrates through simulation that an evolutionary process
of moving to a ’bottom-up’ internally integrated method of autonomous control
will have several advantages over classical systems. Firstly through propellant
mass savings, secondly through better tracking by minimising attitude errors,
and thirdly introducing autonomous control algorithms that can be mathemat-
ically verified.
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11 Appendix A - Notation

A, body state matrix
As, Asymptotically stable matrix
B, control matrix
Coast−, negative turn off thrust switching value, deg
Coast+, positive turn off thrust switching value, deg
d, disturbance vector
DB, dead band magnitude, deg
Fire−, negative turn on thrust switching value, deg
Fire+, positive turn on thrust switching value, deg
FDrill, drill reaction force, N
Fxbase, lateral force acting on base, N
FxL

leg, lateral force acting on left leg, N
FxR

leg, lateral force acting on right leg, N
Fzbase, vertical force acting on base, N
Fzfree

leg , vertical force acting on free to translate leg, N
FzL

leg, vertical force acting on left leg, N
FzR

leg, vertical force acting on right leg, N
g, gravitational constant, m/sec2

I, inertia of lander, kg-m2

IT , total impulse, N-sec
kr, ratchet constant, N/m
ks, spring constant, N/m
K, real time control variable vector
Ks, stability inducing matrix
LB , base length, m
LL, leg natural length, m
LS , leg stroke length, m
mB , base mass, kg
mL, leg mass, kg
M, total moment acting on lander center of gravity, N-m
MT , moment acting on lander center of gravity from thrusters, N-m
N, Number of thrusters
P, positive definite matrix solution to Lyapunov equation
q, rotational rate of lander, deg/sec
R(t), radial position of lander, m
R, positive semi-definite controllable matrix
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t, time, sec
T, thrust, kg
Tlat, lateral thrust component, N
u, control vector
uL

leg, lateral velocity of lander left leg, m/sec
uR

leg, lateral velocity of lander right leg, m/sec
uR, unit radial vector
uθ, unit tangential vector
ubase, lateral velocity of lander base, m/sec
V, total potential of lander physical state
VBODY RATE , potential due to body rate
VEULER, potential due to Euler angles
wbase, vertical velocity of lander base, m/sec
wL

leg, vertical velocity of lander left leg, m/sec
wR

leg, vertical velocity of lander right leg, m/sec
x , body state vector
xbase, lateral position of lander base, m
xfree

leg , lateral position of free to translate leg, m
xL

leg, lateral position of lander left leg, m
xR

leg, lateral position of lander right leg, m
y, system output matrix
zbase, vertical position of lander base, m
zrest
base, vertical reference position of lander base at rest, m

zerror, vertical position error, m
zfree
leg , vertical position of free to translate leg, m

zL
leg, vertical position of lander left leg, m

zR
leg, vertical position of lander right leg, m

zFreeRest
leg , vertical reference position of free to translate leg, m

zLrest
leg , vertical reference position of lander left leg at rest, m

zRrest
leg , vertical reference position of lander right leg at rest, m

Γ, positive definite shaping matrix
θ, lander attitude, deg
θi, lander initial incidence, deg
θDesired, required lander attitude, deg
λ, shaping parameter
Λ, positive definite shaping matrix
θ̈Max, acceleration produced from one thruster, deg/sec2

φ, real time control parameter vector
φ, initial rotation position, deg
ω, body rate vector, deg/sec
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