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In fact, there are exactly 2,118 goods and 2,118
factors.  You did know that, didn't you?
Edward Leamer (1984)

I.  Introduction

Trade economists regularly build models in which the number of goods exceeds, equals, or

is less than the number of factors.  These seemingly innocuous variations in model structure have

profound implications regarding the ability of general-equilibrium models to explain production

patterns.  In models where the number of goods exceeds the number of factors, output and hence

trade flows can no longer be determined solely on the basis of a country’s factor endowments.

Indeed, it is precisely because of this potential indeterminacy of trade and production that many

tests of the factor abundance theory have focused on the Heckscher-Ohlin-Vanek (HOV) model.

This formulation posits a relationship between factor endowments and the factor services that are

embodied in goods trade.  According to the HOV model, countries will export the services of

relatively abundant factors and import the services of relatively scarce factors.

Though the HOV model generates precise predictions of trade in factor services, more

often economists are interested in using factor endowments to estimate commodity trade flows.

This task generally requires the existence of what we call the “factor-endowments-driven” (FED)

model of production, which provides the foundation for a common, one-to-one mapping of factor

endowments into outputs.1 A necessary condition for this relationship to hold is the existence of

an equal number of goods and factors.  Consequently, the empirical literature has tended to rely

implicitly or explicitly upon the “even case” or “square model,” i.e., the implausible assumption

that there are equal numbers of goods and factors.  This assumption has troubled empirical trade

economists, even though they often adopted it for convenience.  As Leamer and Levinsohn (1995,

p. 1363) remark in their survey of the empirical trade literature, “one rather awkward assumption

                                               
1 By “common” we mean that the function linking outputs to endowments is the same across all countries and
independent of factor endowments.
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that cries out for change is that of equal numbers of commodities and factors.  After all, we really

don’t know how to count either.”

While we agree that it is not possible to determine the number of goods and factors by

counting them, we argue that the observed production patterns are consistent only with a world in

which the number of goods exceeds the number of factors.  Our claim is predicated on the

following empirical prediction.  Namely, if there are more goods than factors, then even in cases

where the HOV model holds, it should not be possible to predict output on the basis of

endowments—i.e., the FED model of production should fail.  We implement this test on Japanese

prefectural data, analyzing whether factor endowments determine the location of production or

whether outputs are indeterminate.  Even for this sample of Japanese regions in which the HOV

model of production holds, we find that the FED model fails, as indicated by enormous

indeterminacy in production patterns.  This is the first empirical verification that production

indeterminacy arising from the existence of more goods than factors is a major problem for

predicting specialization.

Furthermore, we show that the estimated coefficients obtained from regressing output or

trade on factor endowments, often called “Rybczynski derivatives,” are not linked to the

underlying technology in the way required by theory.  Therefore they cannot be interpreted as

providing information about a structural relationship between output and factor endowments.

This means that regressions of output or trade on factor endowments have weak theoretical

foundations.

When we use an international data set, surprisingly much of the indeterminacy in the

location of production disappears.  That is, residuals from regressions of output on factor

endowments are far larger for a data set of regions with negligible to low trade costs than for a

data set of countries with presumably higher and more ubiquitous costs of trade.  We interpret

this finding as evidence in support of the hypothesis that trade costs help to render international

production patterns determinate.  However, the fact that the production patterns appear to be

more predictable in the presence of trade costs undermines a major application of regressions of
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trade on factor endowments: attempts to identify trade barriers on the basis of prediction errors

from these regressions.  Indeed, this phenomenon may explain the puzzle identified by Pritchett

(1996), namely the significant negative correlations between conventional measures of protection

and the estimated trade barriers derived from regressions of trade on factor endowments.

II.  Background

The Heckscher-Ohlin-Samuelson model was originally formulated with two factors and

two goods.  In this simple 2 × 2 (two goods, two factors) world, it is easy to derive the major

trade theorems (Factor Price Equalization, Rybczynski, Heckscher-Ohlin, and Stolper-

Samuelson).  Extensions of this model into multigood, multifactor versions are considerably more

complicated, and even in the “square” N × N case, most of the strong results of the 2 × 2 model

cannot be duplicated without exotic and often unrealistic assumptions on the structure of

technology [see Ethier (1984)].  Nevertheless, the N × N model is analytically convenient,

especially since in this case the effect of factor endowments on output (i.e., the Rybczynski

derivatives or, equivalently, the Stolper-Samuelson effects) can be obtained by regressing output

(or goods trade) on factor endowments.2

Economists have often conjectured, however, that there are more goods than factors [see,

for example, Melvin (1968), Bhagwati (1972), Travis (1972), and Rader (1979)].  The reason is

simple.  One can easily imagine a myriad of different goods, but it is difficult to conceive of more

than a handful of factors: several categories of labor, a few kinds of capital, various types of land,

and several mineral and energy resources.3  Fortunately, the theoretical implications of having

                                               
2The Rybczynski derivatives are the result of first differentiating the revenue function with respect to price

and second with respect to factor endowments.  These derivatives relate how output moves when factor
endowments change.  The Stolper-Samuelson effects are simply the result of differentiating the revenue function
with respect to factor endowments first and price second.  These derivatives link wages and prices.  Young’s
theorem guarantees that the two sets of derivatives are the same.

3Of course, if factors are specific to industries, then the potential number of factors increases dramatically.
Some canonical trade models are predicated upon a large number of factors, such as the pure exchange model,
where all factors are sector-specific, or the Ricardo-Viner model, where there is one mobile factor in addition to
sector-specific factors.  But these models are not the subject of much empirical work, as Leamer and Levinsohn
(1995, p. 1345) remark.  Also, these models are usually thought to capture short-run behavior, and not the long-
run determinants of comparative advantage.
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more goods than factors are well-known.  Ethier (1984) cites no fewer than nine works that deal

with the issue, starting with Samuelson (1953).

Vanek (1968) examined extensions of the Heckscher-Ohlin model to cases in which there

are more goods than factors.4  His main contribution was to demonstrate that it still was possible

to obtain a version of the Heckscher-Ohlin theorem expressed in terms of trade in factor services:

i.e., a country will be a net exporter of the services of factors in which it is relatively abundant.

Unfortunately, in a world with more than two goods and factors, it becomes impossible to identify

the factor intensity of industries and so the Rybczynski theorem and its corollary, the Heckscher-

Ohlin theorem, can be expressed only as relationships between technology matrices, trade or

output vectors, and factor endowment vectors.  Still, as long as there are an equal number of

goods and factors and the production techniques are common and independent, these theorems

specify a unique mapping from factor endowments into output or trade.

With more goods than factors, however, most of the basic trade theorems no longer apply.

The Factor Price Equalization theorem remains valid as long as endowments are not too

dissimilar.  Unfortunately, when there are more than two goods and factors, as Ethier (1984, p.

158) notes, “the strong Stolper-Samuleson property that commodity price changes produce

unambiguous changes in all factor rewards runs into serious limitations,” and only a far weaker

version of the Stolper-Samuelson theorem can be maintained.  Most significant for our purposes,

the existence of more goods than factors renders it impossible to achieve a common one-to-one

mapping of endowments into outputs.  Consequently, all attempts to predict trade flows on the

basis of factor endowments have relied, at least implicitly, on the “square” assumption of equal

numbers of goods and factors.

It is largely because of the fact that square models generate so many powerful results that

these models hold a special place in international trade theory.  Although many empirical papers

have focused on the Heckscher-Ohlin-Vanek (HOV) formulation of the model—which focuses on

                                               
4As Anderson (1981) points out, Travis (1964) also derived a similar result, but in the subsequent

literature it has become commonly associated with Vanek's name.
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trade in factor services rather than commodity trade—more often researchers have sought to

generate estimates of trade or production on the basis of factor endowments, relying on what we

call the “factor-endowments-driven” (FED) model of production.5  Three major users of this

methodology are authors seeking to test trade models [e.g., Leamer (1984), Maskus (1991),

Harrigan (1995), and Davis and Weinstein (1996)]; those attempting to identify trade barriers or

industrial policy interventions [e.g., Saxonhouse (1983, 1986, 1989), Leamer (1988a, b), and

Noland (1993)]; and consumers of the preceding literature, who employ their estimates of trade

barriers in studies of trade policy and economic growth [e.g., Edwards (1992), Levine and Renelt

(1992), and Gould and Gruben (1996)].

Many of these studies have tried to predict trade flows on the basis of factor endowments.

However, Harrigan (1995) was the first to realize that one can estimate Heckscher-Ohlin-type

relationships by focusing on production rather than trade.6  He examined whether the production

patterns of 20 OECD countries could be predicted from their factor endowments.  Using 16 years

of annual data, he regressed 10 manufacturing sectors on seven factors.  He found that differences

in factor endowments accounted for much of the variation in output; however, expressed as a per-

cent of actual production, the average prediction error was close to 40 percent.  From this

evidence Harrigan concluded that the factor-abundance production model had little explanatory

power.

Unfortunately, it is difficult to identify in Harrigan’s work exactly why the fits were so

poor.  The theory is static and intended to explain cross-sectional variation, but Harrigan

estimated it as a time series with country fixed effects.  Consequently, his coefficient estimates are

influenced by movements in technology which in general may be difficult to characterize.  As

Davis and Weinstein (1996) note, this makes it unclear whether the empirical failure described by

                                               
5See footnote 12 below for some examples of empirical investigations of the HOV equation.
6As Davis, Weinstein et al. (1997) have noted, the intellectual capital of the HOV theory is staked on the

production side.  The Factor Price Equalization, Rybczynski, and Stolper-Samuelson theorems make no use of the
consumption model at all, and the Heckscher-Ohlin theorem is basically a corollary to the Rybczynski theorem
with the added assumption of identical homothetic preferences.
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Harrigan is due to problems in the FED model of production itself or in the way in which the

matrix of Rybczynski derivatives is constrained to vary across time.

The Harrigan study also raises the question of whether the FED model of production is

inherently flawed because of a violation of a core assumption of the model, such as constant

returns to scale or equal numbers of goods and factors, or whether there are problems in the data

that prevent the model from fitting an international sample.  Problems in the latter category

include measurement error, missing factors, government policy, and the failure of factor price

equalization in some of the countries in the sample.

The major insight in this paper is the recognition that by using Japanese prefectural data

rather than cross-country data, we can substantially simplify the analysis and rule out most of the

potential reasons why the FED production model might fail.7  We work with a set of regions for

which there exists a technology matrix that accurately maps production into endowments.  We

can therefore largely rule out the possibility of failure due to scale economies, a lack of factor

price equalization, measurement error, and government policy.  Even in this best-case scenario,

we find that the FED model of production performs miserably.  This allows us to focus on two

possible reasons for failure: missing factors and production indeterminacy arising from the

existence of more goods than factors.  Our inability to find additional factors that can help explain

production patterns leads us to conclude that indeterminacy is the likely culprit.

Oddly enough, when we turn to international data which Davis, Weinstein et al. (1997)

found to be poorly described by the HOV model of production, we obtain significantly better fits

from regressions of output on endowments.  The fact that the FED model of production describes

international data better than regional data supports the notion that trade costs work to constrain

the range of possible production patterns.  There is an important caveat, however.  The errors in

cross-sectional regressions are almost twice the magnitude of those calculated by Harrigan (1995)

                                               
7Krugman (1991, p. 3) argues for this kind of approach, writing that "one of the best ways to understand

how the international economy works is to start by looking at what happens inside nations. . .  The data will be
better and pose fewer problems of compatibility, and the underlying economic forces will be less distorted by
government policies."
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using fixed-effects estimation.  We interpret these results as evidence that trade costs help resolve

indeterminacy but fail to produce neat linear mappings from factor endowments into output.

III.  Dimensionality, Production, and Trade: Theory and Tests

In this section we illustrate how production and factor endowments are linked together in

models where production is determinate and where production is indeterminate.  The objective is

to show how theory can help us distinguish between these two possible worlds.  We begin by

establishing some notation.  Let N denote the number of goods, F represent the number of

factors, and r index regions (where r ∈ R).  For each region r, Xr is the N × 1 vector of gross

outputs, Vr the F × 1 vector of factor endowments, and Br the F × N matrix of direct factor input

requirements.

A.  Testing for Identical Production Techniques

We now make the standard assumptions about production inherent in the Heckscher-

Ohlin-Vanek model.  First, we assume that technology is identical across regions and exhibits

constant returns to scale.  Furthermore, we assume that regional endowments are not too

divergent so as to preclude factor price equalization (FPE), goods and factor markets are

perfectly competitive, and the number of goods is at least as large as the number of factors (N ≥

F).  If these conditions are satisfied, then it can be shown that production techniques will be

identical across regions, i.e. that Br = B ∀ r ∈ R.  Moreover, for each prefecture we can write:8

BXr = Vr     ∀ r ∈ R  (Dimension F × 1)

These R sets of equations can be expressed more compactly as

BX = V (Dimension F × R) (1)

where B is the common F × N technology matrix, and X is an N × R matrix whose columns

consist of the output vectors for each region, and V is a F × R matrix whose columns are the

                                               
8It is important to clarify one potential source of confusion about this equation.  If we let J denote Japan as

a whole, BXJ must equal VJ by definition.  However, as Davis, Weinstein et al. (1997) discuss in considerable
detail, there is no guarantee that BXr will equal Vr for each region within Japan.
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endowment vectors for each region.  The columns of the left-hand side of equation (1) represent

the measured factor content of production for each region and the columns of the right-hand side

are the actual factor endowment vectors. 9  Hence equation (1) tells us that the measured factor

content of production should equal the actual regional endowment.

We refer to equation (1) as the Heckscher-Ohlin-Vanek (HOV) model of production.

Notice that this relationship can fail because of technological differences, increasing returns, or

any other reason why factor price equalization might not obtain.  If we find that equation (1) does

hold, however, then we can conclude that whatever violations of the HOV theorem’s basic

assumptions exist, they are not sufficient to undermine the theory’s predictions about output.

We will take two strategies toward testing equation (1).  First, following Harrigan (1995),

we examine prediction errors; second, following Ethier (1984), we calculate Rybczynski

“correlations.” 10  To do so, we note that equality of the BX and V matrices in equation (1)

implies equality for each corresponding element of the two matrices; i.e., for each factor f and

region r,

[BfXr] = [Vfr] (Dimension 1 × 1) (1')

where Bf denotes the fth row of the technology matrix and Vfr the fth element of Vr.  Obviously it is

too much to expect that equation (1') will hold exactly.  Instead we look at the percentage

deviation between the predicted factor content of production and the actual factor endowment.  In

practice, this involves first creating an F × R matrix, D, whose elements are defined below:

Dfr = |BfXr/Vfr – 1|.

If the errors are small, we conclude that the HOV model provides a reasonably accurate

description of production structure.  If there are substantial errors, we conclude that the model is

deficient in some respect.

                                               
9Our nomenclature here follows the literature, in which the endowment estimates that are imputed from

information on outputs and technology are referred to as the “measured” endowments, while the endowments taken
from the data sample are termed the “actual” endowments.

10Strictly speaking, these are not true correlations but are “on average” relationships analogous to the
well-known multigood comparative advantage “correlations” between exports and relative autarky prices derived
by Dixit and Norman (1980) and Deardorff (1980).
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We could in principle examine all of the elements of D at once, but it is analytically

convenient to consider two types of average prediction errors.  First, looking at the column of D

corresponding to a given region r, we can compare the actual endowments and measured factor

absorption for each region.  Second, we can hold f fixed and consider the corresponding row of

D, comparing the actual endowments and measured factor usage across all regions.  In this way

we distinguish how well the model fits individual regions as well as particular factors.

It is not sufficient to stop here, however.  Tests of the HOV production model based on

equation (1') are incomplete, since they could conceivably yield misleading conclusions in certain

instances.  For example, suppose that all regions had identical factor proportions but differed only

in size.  In this case prediction errors might be very small because larger regions just produce

more of everything, but we might not have any information about whether differences in relative

factor proportions are associated with outputs in the manner specified by theory.  What we need

is some way of addressing the question of whether differences in relative factor proportions

translate into differences in observed production patterns as theory predicts.

Fortunately, this problem has already been largely worked out by Ethier (1984).  With two

goods and two factors, the Rybczynski theorem maintains that holding output prices constant, an

increase in the endowment of some factor will generate a more-than-proportional increase in the

output of the good that uses that factor intensively and a reduction in the output of the other

good.  In higher dimensions (N > 2 goods, F > 2 factors), the relationship between endowments

and production must be stated quite differently.11

In particular, our empirical tests impose restrictions based upon Ethier’s multidimensional

formulation of the Rybczynski relationship.  Suppose for two regions r and r' ∈ R we have BXr =

Vr and BXr' = V r'.  We can then subtract one equation from the other to get: B(Xr – Xr') = (Vr –

Vr').  Premultiplying both sides by the transpose of (Vr – Vr') yields Ethier’s Rybczynski

“correlation”:

                                               
11Another test involves verifying that, for each industry and each factor, at least one Rybczynski

derivative is negative.  With the large number of sectors included in our study, this test is not particularly powerful.
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(Vr - Vr')T B(Xr - Xr') =  (Vr - Vr')T (Vr - Vr') > 0 (Dimension 1 × 1) (2)

For each pair of regions (r, r'), equation (2) says that regions with more (less) of a

particular factor generally produce goods which use that factor relatively more (less) intensively.

If we examine this relationship for all r and r', we can group the left- and right-hand sides of

equation (2) into two R × R symmetric matrices.  According to theory, all the elements

comprising these matrices should be non-negative, and the diagonal elements should be zeroes.

For the matrix whose elements correspond to right-hand side of equation (2), it is a mathematical

truism that these conditions are fulfilled.  However, for the matrix comprised of the left-hand-side

terms, there is no guarantee that the off-diagonal elements are non-negative.

We can improve Ethier’s formulation with a slight modification.  One drawback of the

above approach is that it pools together information garnered from different factors.  To see this,

consider what theory tells us the relationship should look like for any factor f.  Just as equation

(1') describes the production equation of the HOV model in terms of a particular factor and

region, there is an analogous expression for Ethier’s multidimensional Rybczynski “correlation”:

(Vfr- Vfr')Bf (Xr – Xr') =  (Vfr- Vfr')2 > 0     ∀ f, r, and r' (Dimension 1 × 1) (2')

Equation (2') permits us to examine the data by factor and by region, whereas equation (2) pools

together all of the factor evidence for any regional comparison.  This is an important advantage,

because if equation (2') holds for some factors but not others, then tests based on equation (2)

might fail to detect failures in the theory for particular factors.  This would occur if negative

values on the left-hand side of equation (2') were eliminated in being summed together with one

or more positive values.

How does one test a relationship like (2')?  Since there are FR2 relationships, it makes

sense to try to place some structure on the results to make them more interpretable.  As we noted

above, for each factor f, we can arrange the results from each pairwise comparison generated by

the left-hand side of equation (2') into a symmetric R × R matrix, PVX

f .  Similarly, employing this

procedure for the right-hand side generates the symmetric R × R matrix, AVV

f .  We are left with F

pairs of matrices, one pair for each factor f, as shown below:
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PVX

f = AVV

f (Dimension R × R) (3)

As with the aggregate matrices described above, these factor-specific matrices are symmetric and

have zeroes along the diagonal.  Moreover, the off-diagonal elements should be non-negative.

There are two types of tests we can conduct on these pairs of matrices.  First are sign

tests, which entail verifying that the off-diagonal elements of PVX

f  are all non-negative.  (Those of

AVV

f  are necessarily so.)  Sign tests tell us whether prefectures that are relatively more endowed

with a given factor tend, on average, to produce larger quantities of commodities that use that

factor intensively.  Unfortunately, sign tests are problematic as a test of the relationship in

equation (3) because they are insensitive to magnitudes.  For example, if prefectures are very

similar in their endowments but there exists some measurement error, the sign test may fail even

though BX may actually be very close to V in most instances.

To remedy this potential drawback and to bolster our analysis, we also conduct correlation

tests.  For each factor f, we can make R(R – 1)/2 pairwise comparisons between the elements

comprising the symmetric matrices on the left- and right-hand sides of equation (3).  The rank or

raw correlation of these R(R – 1)/2 elements—what we call “within-factor” tests—indicate

whether large differences in regional endowments of a given factor are reflected in large

differences in outputs.  Unfortunately, both the sign and within-factor correlation tests share the

same problem inherent in tests of equation (1') outlined above: namely, success in these tests

might arise simply from size variation across regions, rather than reflecting differences in factor

proportions.  Fortunately, we can control for the possible confounding effect of size by

conducting “cross-factor” tests.  For each pair of regions (r, r'), equation (2') gives us F

comparisons of relative factor abundance and relative factor usage.  By conducting rank and raw

correlations of these F × 1 vectors, we can determine if differences in relative factor abundances

are reflected in corresponding relative outputs.

In sum, success on this battery of tests indicates that a set of regions has identical or nearly

identical production techniques, whereas failure indicates that there must be substantial regional

variation in unit input requirements.  These tests of the HOV production model also serve as a
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critical controlled experiment that we can draw upon in subsequent tests of the FED model.  If all

regions use identical production techniques, then we know that our inability to predict output on

the basis of factor endowments cannot be the result of increasing returns, technological

differences, fewer goods than factors, or any other reason that might cause factor-price

equalization to fail.   As we argue in the next section, this significantly reduces the possible causes

of problems with the FED model.

B.  Predicting Outputs From Factor Endowments

1. Theory

A major question in international trade is whether production levels and trade flows are

determined by factor endowments.  In this section we explore the conditions under which the

Heckscher-Ohlin model guarantees such a relationship. Ultimately, we would like to write output

as a linear function of factor endowments, i.e.

Xr = ΩVr (Dimension F × 1) (4)

where the Ω matrix has dimension N × F. Equation (4) is what we call the factor-endowments-

driven (FED) model of production.  In general, output can be written as a unique function of

endowments, that is independent of the endowments, only if N ≤ F. Furthermore there will be a

common technology matrix B such that BXr = Vr ∀ r ∈ R only if there is factor price equalization,

which in turn requires that N ≥ F.  Hence a necessary condition for both relations holding is that

there are an equal number of goods and factors.

An alternative way about thinking about the problem is that if BXr = Vr, then a unique Ω

will exist only if B is invertible.  Invertibility in turn requires that B is of full rank and that there

are an equal number of goods and factors; and in this case, Ω equals B-1.

Notice that we have just derived a test of whether there are an equal number of goods and

factors.  If the HOV model of production works and B has full rank, then the FED model of

production will fail if there are more goods than factors.  To demonstrate this, consider what

happens if N < F.  If N < F, country endowments are not scalar multiples of each other, and there



13

is no international factor mobility, then factor price equalization will not obtain in general, and the

HOV model of production will be violated.12  In a one-good, two-factor model, for example,

there is no linear relationship between endowments and output that is the same for all regions.  On

the other hand, if N > F and the other conditions of the model are satisfied, the HOV model of

production should apply: i.e., all regions will use identical production techniques.  However, the

equilibrium output vectors are no longer unique, B is not invertible, and there is no one-for-one

mapping from endowments into production as postulated in (4).  Thus, if there are more goods

than factors we should expect equations (1') and (2') to hold but equation (4) to fail.13  This

simple test based on the invertibility of B serves as our main mechanism for identifying if there are

more goods than factors.

How do we assess a failure of equation (4)?  Once again we are going to evaluate the

success of the model by focusing on percentage prediction errors.  Specifically we examine the

magnitudes of 
  

) 
Ω nV r

X
nr − 1 , where   

) 
Ω n  is our estimate of the nth row of the Ω matrix and Xnr

the nth element of Xr.  As in our tests of equation (1'), we generate average prediction errors

across prefectures and across industries.

We also implement a second test, making use of the fact that somewhat more structure

can be placed on the Ω matrix.  Premultiplying equation (4) by B, we obtain BX = BΩV.

Assuming that equation (1) holds, we can then substitute for BX to yield:

V = BΩV ⇒ BΩ = I (Dimension F × F) (5)

                                               
12 Technically, in a world with N < F and factor mobility, factors might migrate so that FPE obtains.

Then both the HOV and FED models of production would hold, and we would not be able to distinguish between a
world in which there are equal numbers of goods and factors and one in which there are fewer goods than factors.
However, with fewer goods than factors, we would still not expect to see equation (1) hold and equation (4) fail.

13Net trade in factor services, by contrast, will remain determinate even in a world where N exceeds M.
In other words, the HOV trade equation remains valid.  Using r to denote a country, W to denote the world, sr to
denote country r's share of world spending, and T to denote trade, this can be formulated mathematically as BTr =
Vr - srVW.  Thus our results have no bearing on the studies which attempt to measure how well the HOV trade
equation fits the empirical data.

In fact, there is a growing empirical literature on the predictive power of the HOV trade equation, and so
far the reviews are mixed.  Early studies, such as Maskus (1985) and Bowen, Leamer, and Sveikauskas (1987),
unanimously found the model to be an empirical failure.  Later studies offer a somewhat more equivocal
assessment.  Papers by Trefler (1993, 1995) and Davis, Weinstein et al. (1997) have shown that when modified in
minor ways the HOV model has considerable explanatory power.
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where I is an F × F identity matrix.14  Similarly, it is possible to write

X = ΩBX ⇒ ΩB = I (Dimension N × N) (6)

Now I is an N × N identity matrix.  In a world where N exceeds F, equation (6) will never be

satisfied because it imposes N2 linear restrictions on only NF parameters.  We therefore test only

equation (5) to see if the estimated parameters of the Ω matrix are weakly related to the

underlying technology by imposing F2 restrictions on NF parameters.

Theory tells us that we should expect to see three possible outcomes from these

experiments.  If both the HOV and the FED models work, then we can conclude that endowments

do determine the location of production.  Similarly, if both models fail, then we can conclude that

the world must violate a fundamental tenet of the HOV framework.  The final possibility, that

HOV works but the FED fails, indicates that the basic assumptions of the HOV model hold, but

there are more goods than factors.

There are two different ways in which having more goods than factors can affect our

results.  First, it may be the case that there truly are fewer factors than goods.  Second, it may be

that we simply have omitted some important factors from our production specification. To see

why this might matter, suppose that we are in a two-good, two-factor model but have data on

only one factor.  If one has the row of the B matrix corresponding to that factor and all the other

conditions of the model are satisfied, then the HOV model would hold even with an omitted

factor.  On the other hand, it would not be possible to predict production structure without the

missing factor.  Since we do have not a complete list of potential factors, we must be open to the

possibility that some factor endowments are not included in our analysis.  Hence, if we find that

equation (4) fails, our analysis must address the question of whether there are truly more goods

than factors, or whether we have inadvertently omitted important factors.  We will return to this

issue in the empirical implementation.

                                               
14One could easily think of some particular vectors V for which the inference in equation (4) is not strictly

correct, because there are matrices other than I for which the first equation holds.  However, since this relationship
has to hold for any V, the only possible solution is BΩ = I.
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C. Trade Cost Tests

Thus far, we have considered tests within the context of the success or failure of the HOV

and FED models of production.  A complementary approach asks what conditions will serve to

eliminate production indeterminacy arising from the existence of more goods than factors.

One potential solution is to aggregate goods in such a way that N = F.  It turns out,

however, that aggregation solves the indeterminacy problem only in exceptional cases.15  One

such stylized situation involves the existence of two factors and three goods (autos, brown shoes,

and black shoes), with two goods (the shoe varieties) produced using identical techniques.  In this

case, it is not possible to predict how much of each type of shoe will be produced, but one could

predict production of autos and total shoes by aggregating the two types of shoes.  This kind of

degenerate case is, of course, highly unlikely to prevail in practice.  Particularly in our sample,

where industries are defined at a relatively high degree of aggregation, the odds of any two

industries employing exactly the same production techniques are remote, at best.16  Aside from

these uninteresting and very implausible scenarios, the literature addressing the problem has

typically concluded that aggregation does not offer a viable way of obtaining mappings from

factor endowments into production, when N > F.17

                                               
15Of course, the B matrix provides a trivial set of weights for aggregating sectors, but weighting the

outputs by their unit factor requirements reduces the FED model of production to a restatement of the HOV model.
16 Indeed, we can and did check for this possibility by verifying that no two columns in the B matrix were

identical.
17Leamer (1984) attempts to use aggregation to address the indeterminacy problem, forming commodity

aggregates based on how production is correlated.  However, this procedure biases the results in favor of fitting the
model, as it uses information on the pattern of production to predict the pattern of production.

More generally, it can be demonstrated that it is impossible to aggregate while maintaining reasonable
industry definitions.  Our analysis, which parallels Chang (1979) and Leamer (1994), runs as follows.  Suppose
that no two goods are produced with the same technology so that we are not in a degenerate case.  Then arbitrarily
choose a set of F goods, X1, and separate the technology matrix into B1, an FxF matrix corresponding to X1, and
B2, a matrix of dimension Mx(N-F).  The HOV production equation is now B1X1 + B2X2 = V.  Since B1 is
invertible, this can be written as

X* = X1 + B1
-1B2X2 = B1

-1V.
X* is a set of F aggregated goods, but one cannot give this aggregate an interpretation since every element

will be a linear combination (with, in general, some negative weights) of N - F + 1 goods.  Furthermore, even if
one tried to forge ahead by regressing X1 on V and treating B1

-1B2X2 as part of the error term, the fact that X2 is
correlated with V means that one’s estimates of B1

-1 will be biased and inconsistent.
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A more promising candidate for eliminating indeterminacy, suggested by Leamer (1984),

is trade costs: i.e., all transactions costs, including but not limited to transportation and

information costs, entailed in exchanging a commodity across geographical boundaries.18  If trade

flows minimize trade costs subject to the constraint that they satisfy the HOV trade equation,

there may exist a linear relationship between factor endowments and trade (and hence production)

patterns.  For example, one can obtain such a relation by solving the following minimization

problem
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∀−=

∑
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min κ

where κ is a vector of trade costs, Tr a vector of net trade flows for country r, Vr country r’s

endowment vector, sr country r's share in global consumption, and VW the world endowment

vector.

One problem with Leamer’s approach is that it does not guarantee that the solution to the

trade cost minimization problem will also cause goods markets to clear.  For example, if the most

capital and labor-intensive goods are traded costlessly but are only demanded in very small

quantities in equilibrium, then the solution to the minimization problem will not be the solution to

the general-equilibrium problem.  Furthermore, as Anderson (1988) notes, Leamer’s results are

highly contingent on the functional form of trade costs.  Leamer also implicitly assumes that

international trade costs, which could drive a wedge between domestic and foreign prices, do not

affect unit input requirements or consumer demands.

Although it is possible to identify theoretical problems with Leamer’s approach, it is not

hard to construct cases where his approach works nicely.  In Figure 1 we present a model where

there are two countries, three goods, and two factors (K and L).  The countries’ endowments are

denoted by E, and their consumption points by C.  If there are no trade costs, the factor-price

                                               
18Leamer actually frames the argument in terms of transportation costs, but it is more appropriate to think

of these costs as international transactions costs, since distance does not enter the analysis.  This framing of the
issue is supported by McCallum's (1995) finding that Canadian provinces trade with each other 20 times more than
they do with U.S. states located similar distances away.
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equalization (FPE) set is described by the hexagonal region.  Trade here is indeterminate, as there

are an infinite number of ways that production can be divided between the two countries.

Suppose, however, that good 1 is traded at some cost.  In this case the FPE set collapses as

shown in Figure 2.  Output of good 1 in each country (indicated by the length of the stems from

the origin) is determined by the relative income levels at home and abroad.  Once this is

determined, the factor content of trade must be accomplished solely via the exchange of goods 2

and 3.  In this manner, it is possible for trade costs to render production patterns determinate

without upsetting FPE.  This solution will only work in the case in which the number of goods

traded at cost exactly equals N - F.  If fewer goods are subject to trade costs, then we obtain the

result portrayed in Figure 3.  Here there are two factors and four goods, only one of which (good

1) cannot be traded costlessly.  Each region consumes and produces good 1 in proportion to its

income share, but output of the other goods is indeterminate.  Hence, with many more goods than

factors, identical production techniques across regions (i.e., the HOV production model works),

and trade costs on certain goods, then endowments should still be able to predict the output of

non-tradable goods sectors, even if the FED model fails for tradable industries.

The above framework always features some nontraded goods, when in reality most

commodities are traded at some cost.  Hence we should also develop the theory for cases in

which trade costs are ubiquitous. While it would take us too far afield to develop the topic fully,

we would at least like to provide a heuristic account, based on the analysis of Xu (1993), of how

trade costs could help to eliminate the production indeterminacy.19

Consider a Heckscher-Ohlin world with two countries whose endowments are not too

dissimilar, two factors (capital and labor), and a continuum of industries indexed by z ∈ [0,1].20

Each industry z has a continuum of goods indexed by j ∈ [z, 1 + z].  We assume that j is a direct

measure of the capital intensity of the good. We also assume that all goods have Samuelson

                                               
19Xu’s model is actually more general than the one given below, as it incorporates differences in both

factor abundances and technology.  However, the essence of the model is captured in the version we present.
20 We wish to thank Donald Davis for providing us with a clear and elegant explication of this point.
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iceberg trade costs, so that if t > 1 units of a good are shipped, only 1 unit arrives.  Suppose that

the home country is more capital abundant than the foreign country and that initially trade costs

are prohibitive.  In this case the return to capital will be lower in the home country than in the

foreign country.  Now consider what happens if trade costs fall sufficiently to allow for trade.

With lower trade costs, the home country will have a comparative advantage in the most capital-

intensive goods due to the fact that capital is cheaper at home than abroad.  Similarly, lower

foreign wages will cause the foreign country to export the most labor-intensive goods.  Goods of

intermediate capital intensity will not be traded because the cost advantage in neither country will

exceed the trade costs.  In the limit as trade costs go to zero, FPE will obtain, and the range of

non-traded goods will fall.

This structure suffices to make both production and trade determinate.  There is a range of

goods [0, j*] produced in and exported from only the foreign country.  Likewise, there is a range

of goods [j’, 2] produced in and exported from only the home country.  All goods in the range [j*,

j’] are not traded in equilibrium, so each country produces these goods according to its own

needs.  The determination of the boundaries, j* and j’, depends inter alia on the magnitude of

trade costs, the equilibrium level of demand for the various goods, and the extent of differences in

the countries’ endowments.  Note that although there is complete specialization in all goods

traded in equilibrium, this need not suggest any specialization in the industrial aggregates (hence

in real-world data), since each industry incorporates goods with a range of factor intensities.

Nevertheless, one can sensibly talk about the typical factor intensity of an industry, and it will

generally be the case that exports are higher for more capital-intensive industries in the capital-

abundant country (and vice versa for the labor-abundant country).21

The upshot of this analysis is that trade costs may represent an important mechanism for

generating production determinacy within the Heckscher-Ohlin framework.  Indeed, in a world

with trade costs and more goods than factors, one should expect two results.  First, factor

                                               
21 It is worth noting that the relationship is not necessarily linear.
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endowments should provide more accurate predictions of output for non-tradables than for traded

goods if the latter are traded freely.  Second, assuming that trade costs are more significant at the

international level, but do not disturb FPE significantly, then the FED model should fit better on

the international data set, ceteris paribus. 22  We now turn to testing these propositions.

IV. Data Description

This paper makes use of two data sets.  The first is a slightly modified version of the data

set constructed in Davis, Weinstein et al. (1997).  We obtained our technology matrix, B, from

that paper, but augmented the regional data so that we had information on 47 Japanese

prefectures rather than ten Japanese regions.  The data appendix provides details on the

construction of our data set.  Summary statistics are provided in Table 1.  As one can see there is

a large amount of regional variation in endowments due in part to the tremendous size variation of

Japanese prefectures.

The second data set we use is an international data set on endowments and industry sales

at the ISIC three digit level of 22 OECD countries.  Details on the construction of this data set

are also discussed in the data appendix.  As one might expect, there is greater dispersion in output

(as measured by GDP) and endowments in the international data than in the regional.  However,

the difference is not as large as one might suspect.  Typically the coefficient of variation is only

about twice as large for the international data set as for the regional data.

More interesting is the evidence on the dispersion of industries at the regional level.

Tables 2 through 4 present coefficients of variation calculated in two ways.  First, we hold each

industry fixed and calculate a coefficient of variation using region and country based variation of

given industries.  This type of dispersion is quite sensitive to the size distribution of regions and

countries.  Not surprisingly, the data reveals that there is about twice as much dispersion in

                                               
22The qualification “ceteris paribus” is necessary because international data is likely to differ from

regional data in dimensions other than trade costs.  Indeed, as we discuss below, some of these differences (e.g.,
dissimilar production techniques across countries and larger measurement errors on international data) are likely to
work in the opposite direction, impairing the performance of the FED model at the international level.



20

international sales than in regional output.  Most of this is due to two large outliers, the US and

New Zealand.  If we hold countries or regions fixed and examine how much variation there is

across different industries, we can obtain some sense of whether industries are more specialized

on regional or international data. Krugman (1991) found that there was greater regional

dispersion of industries in the US than in Europe.  Comparing Tables 2 and 4 we find similar

evidence for Japan vis-à-vis the OECD.  There is far more specialization among Japanese regions

than among countries.  This is what one might expect if trade costs are higher for international

than for interregional trade.  We now turn to investigating the implications of this hypothesis more

systematically in the next section.

V.  Results

The box below summarizes the theoretical implications of production indeterminacy.  As

we mentioned above, we will use both regional and international data to test the theory.  The use

of regional data is important because it provides us with a data set in the HOV model of

production is satisfied.  This enables us to establish that failures in the FED model of production

are not the result of differences in production techniques.  Furthermore, the regional data also

allow us to examine whether the FED model performs differently for tradables, which are traded

relatively freely, than for non-tradables, which are traded at substantial cost.  Next we turn to

international data in which trade costs are presumably more pervasive and quantitatively

significant than for tradables in the regional sample.  Here we examine the theoretical prediction

that the FED model of production yields more accurate forecasts in the presence of trade costs.
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Implications of Production Indeterminacy
Suppose the HOV production model holds.  Then N ≥ F, leaving two possible scenarios:

If N = F and B has full rank,  then Ω = B-1.  Both the HOV and FED production models hold,
meaning:

BX = V and  X = ΩV
BΩ = I and ΩB = I

If N > F, then the HOV model holds but the FED model does not.  This implies:
BX = V but XT ≠ ΩΤV  for goods traded at no cost*

and XNT = ΩΝΤV  for non-tradables or goods subject to trade costs
ΩB ≠ I and  BΩ ≠ I

*assuming the number of traded goods exceeds the number of factors

A.  The HOV Model of Production: Tests of Equations (1') and (2') on Regional Data

We begin our analysis by verifying that the Heckscher-Ohlin-Vanek model of production

is valid for our sample of Japanese regions.  In particular, we confirm that BX = V, or that each

region employs the same production techniques (Br = B ∀r ∈ R).  As we mentioned earlier, this

relationship could fail to hold as a result of increasing returns, Ricardian technical differences

across regions, fewer goods than factors, or any other reason that would cause factor price

equalization to fail.  In this sense, our test is similar in spirit to that used by Davis, Weinstein et al.

(1997), with one difference.  In that paper, it was crucial that households consumed in the same

regions in which they produced, so regional trade vectors could be constructed.  Since the

consumption theory is irrelevant for our tests of the Rybczynski theorem, however, it is not

essential that all workers in each prefecture conduct their consumption in that location.  We need

simply to have accurate production and factor endowment data for each prefecture.  This enables

us to use data from all 47 Japanese prefectures as opposed to the 10 aggregated regions used by

Davis, Weinstein et al.  Our X vector contained data on gross output for 29 sectors for each
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prefecture, and our V vector included three factors: workers with less than a college education,

college-educated workers, and capital. 23

Table 5 presents the average prediction errors of the HOV model of production.  The

prediction errors are generally quite small, averaging 13% across all observations (where each

observation is prefecture-factor specific).  As explained earlier, we also calculate average errors

over each prefecture and over each factor.  There are few outliers among the prefectures; only

three have average errors in excess of 25%, and none has an average error greater than 33%.

Among the factors, the model works best for capital and worst for non-college-educated labor.

Figures 4 and 5 present plots of the predicted and actual factor endowments for each

prefecture.  Since we do not want differences in prefectural size to affect our results, each

observation is deflated by the total amount of the corresponding factor for Japan and also in

Figure 5 by the square root of the region’s GDP.  The graphical evidence confirms our basic

intuition from Table 1.  To the extent that economies of scale or technological differences exist,

they are not significant enough to invalidate the HOV production predictions.  This evidence

corroborates the findings of Davis, Weinstein et al. (1997) for more aggregated regions in Japan:

production techniques are (approximately) identical across Japanese prefectures, and the HOV

model of production performs very well in areas where it is reasonable to assume factor price

equalization.

We also conduct the sign and correlation tests suggested by Ethier.  Recall that the sign

test entails an examination of the off-diagonal elements of the three matrices (one for each factor)

corresponding to the left-hand side of equation (3).  According to theory, the R(R-1)/2 off-

diagonal elements, which for our sample involves 1,081 possible pairwise comparisons of different

prefectures for each factor, should all be non-negative.  Once again, this is a test of whether

prefectures that are relatively more endowed with a given factor tend to produce larger quantities

of products that use that factor intensively.

                                               
23See the Data Appendix for information on how the sample was constructed.
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The results from these sign tests are presented in Table 6.  Of the 3,243 possible sign

checks, only 5.2% (168) were negative.  Without a well-specified null, it is difficult to say whether

predicting 95% of the signs correctly is good or bad.  In order to get a sense of how a random

mix of output and endowment vectors would perform, we randomly assigned actual endowment

vectors to actual output vectors and reran the tests.  These simulated results revealed that if

outputs and endowments were independently distributed, slightly more than 50% of the signs

were negative.  While this experiment enables us to reject the hypothesis that the real data were

generated by a coin flip, it is unfortunately not a very meaningful test, since no one believes that

output and endowments are completely uncorrelated.  However, based on the sign test, it seems

reasonable to conclude that regions more endowed with a particular factor generally produce

more outputs intensive in that factor.  In this sense, the data corroborate Ethier’s Rybczynski

“correlation.”

Our second test of Ethier’s multidimensional Rybczynski formulation uses the correlations

between the elements comprising the matrices on the left- and right-hand sides of equation (3).

First, we conduct “within-factor” tests, holding f constant and examining the variation across

prefectures in the endowment and utilization of a given factor.  The results of this experiment are

reported in the second panel of Table 6.  The rank and raw correlations exceed 0.95, indicating

that differences in production structures across prefectures are very tightly linked with differences

in factor endowments, in a manner consistent with theory.  Of course, it is possible that this result

is being driven by size differences rather than differences in relative factor endowments.

To eliminate the possibly confounding influence of size-based variation, we also conduct

“cross-factor” tests.  Here we hold constant the prefecture pair and examine correlations between

the measured and actual absorption of factors.  In effect, this test tells us whether relative factor

abundances translate into relative differences in production structure, in accordance with the HOV

production model.  The bottom panel of Table 2 reports the cross-factor correlations.  The

average raw correlation (averaged across all 1,081 prefecture pairs) was 0.84, and the average

rank correlation was 0.78.  Though somewhat lower than the within-factor correlations, these
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results still manifest a close connection between outputs and factor endowments as posited by the

HOV production model.  We believe that this is the first empirical verification of the Ethier’s

multidimensional Rybczynski “correlation.”

B.  Assuming the Even Case: Tests of Equations (4) and (5) for Regional Data

Thus far we have established that the Heckscher-Ohlin-Vanek production model describes

the regional data quite well.  However, the links between endowments and production that we

have explored so far have been “correlations” that one can derive from the assumptions of the

HOV model.  The question examined in this section is whether the data support a stronger

relationship between factor endowments and production.  In particular, is there a linear, one-to-

one functional relationship between factor endowments and outputs, or are “correlations”

between these two variables the most that we can expect to obtain?  As noted earlier, this

amounts to asking whether there are an equal number of goods and factors.

To examine this question, we regressed output on factor endowments.  Before discussing

the results, we need to address three minor econometric issues.  First, our dependent variable is

truncated at zero, and even though only nine observations were zeros, we decided to use a Tobit

procedure to correct for a bias in these industries.24  Second, larger regions are likely to have

larger errors, so it is important to correct for heteroskedasticity.  Following much of the literature,

we deflated all observations by the square root of prefectural GDP.25  Third is the issue of

whether to include a constant term.  In a model with equal numbers of goods and factors, a

constant would not be necessary unless the error did not have a mean of zero.  If we assume that

the error incorporates omitted factors, then there is good reason for not forcing the error term to

have a mean of zero.  In a world with more goods than factors, the equation is misspecified with

or without the constant.  Since there seemed to be good arguments both for including and

                                               
24The industries with zeros in them were rubber, leather, and non-ferrous metals.
25In an alternative specification we adjusted for heteroskedasticity using endogenous weights, where the

weights were chosen by assuming that the variance of the error term is proportional to GDP raised to some power.
The results were qualitatively similar to those obtained using the square root of GDP as the weight.
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excluding the constant, we ran the model both ways.  We report only the results from the

regressions with a constant, because the results without the constant were similar although the fits

were somewhat worse.

The results of regressing X on V are presented in Table 7.  We report standard errors to

indicate the precision of the point estimates.  It is often the case that one or more of the

coefficients is statistically significant and in almost all specifications we can reject the hypothesis

of zero slopes.  It is important to recognize, however, that without an alternative hypothesis we

cannot provide an interpretation of a coefficient that is statistically different from zero.  As long as

BX = V, output and factor endowments will be correlated, as Ethier has demonstrated

theoretically and we have verified empirically.  However, this does not imply that X is a well-

behaved function of V.

In Table 8, prediction errors are expressed as percentages of the actual values.26  We have

calculated average deviations for each prefecture (across all industries) and for each industry

(across all prefectures).  Strikingly, the average error is more than an order of magnitude larger

than that obtained when we compared BX and V.  The typical error exceeds 300%—almost 25

times larger than the 13% average prediction error for factor endowments shown in Table 1.

What makes this enormous discrepancy even more astonishing is the fact that our B matrix is

given as data, while our Ω matrix was estimated in a way designed to minimize the residuals.27

Figure 6 plots predicted and actual output levels.  Output in every sector has been divided

by the total Japanese amount in that sector, so all points are distributed between zero and one.

The plots reveal several interesting features of the data that are harder to see in Tables 7 and 8.

                                               
26We dropped the nine observations with zero reported output, for which this measure is undefined.  We

also acknowledge a potential problem with this measure: it may generate exceptionally large errors for observations
in which actual production is close to zero and predicted production is negative.  Although this possibility exists, it
does not explain why we obtain such large average errors.  Relatively few points (nineteen in Figure 5, three in
Figure 6) fall into this category, and the average error for these observations is 348%, which is not much larger
than the average error for the entire sample.

27We also tried regressing V on X.  In general, this produced tighter fits than those obtained from using
the Japanese technology matrix and almost all coefficients could not be statistically distinguished from the values
of the B matrix.  Unfortunately with 30 parameters to estimate (29 coefficients plus a constant) and only 47 data
points, the standard errors were quite large.  Since our tests had very little power, we decided not report the results.
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First, there is a lot more variance in the distribution of normalized output than in the distribution

of normalized factor endowments.  Indeed, the median variance of normalized output is 17 times

larger than the median variance of normalized endowments.  Second, there are many more

extreme outliers in the production data than in the factor endowment data.  The average

maximum value in the production data was eleven times larger than the median value, while the

maximum/median ratio for the endowment data was only about two.  One possible reason for this

difference in variances is the existence of Jones magnification effects.  Alternatively, far greater

variation in production patterns than in factor endowments is also consistent with production

indeterminacy.  Whatever the reason for these extreme outliers in virtually every industry, their

existence means that the R2’s tend to overstate the ability of regressions to fit the typical point.28

We care not only about the accuracy of the model, but also about the interpretation of the

coefficients.  We argued previously that if BX = V (as in our data set) and if X = ΩV, then it must

be the case that BΩ = I.  In other words, if there is a one-to-one relationship between factor

endowments and outputs, then there should be a relationship between input requirements (the

elements of B) and the coefficients obtained by regressing output on factor endowments.  In order

to test whether our coefficients are capturing the underlying technology, we regressed output on

factor endowments and imposed the nine linear constraints implied by the relationship BΩ = I.

The appropriate test uses the Wald criterion, which has a χ2 distribution with nine degrees of

freedom.  We used two estimating methods, iterative and non-iterative seemingly-unrelated

regression.  The critical value (1% level) of the Wald statistic was 22, but we obtained 1403 and

1053, for the iterative and non-iterative tests, respectively.  The data clearly reject the hypothesis

that our estimated coefficients are actually Rybczynski derivatives, since they are not related to

technology in the manner required by theory.

Thus, our results using regional data demonstrate that the FED model fails to hold.  Why

is this so?  Since previous studies have used international data, they have been unable to

                                               
28One approach to dealing with these outliers is to use an estimator obtained by minimizing absolute

deviations.  We reran our tests using a minimum absolute deviations estimator, but the results remained
qualitatively similar.
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distinguish among the many potential reasons that the FED model of production might fail.

However, BX = V in our regional data, so we can eliminate virtually all of the problems that made

Harrigan's (1995) results difficult to interpret.  Technological differences (e.g., increasing returns),

lumpy regions, regional industrial policy, or any other reason that might cause factor price

equalization to fail within Japan would cause both BX = V and X = ΩV to fail.29  Similarly, if

there were fewer goods than factors, we would either have found both relationships failing or,

with factor mobility, both working.  Since the first relationship holds and the second does not,

either the B matrix is not invertible due to the existence of more goods than factors, or our

analysis has omitted some important factors.

C.  Missing Factors

Since it is impossible to be certain that all relevant factors have been included, there is no

way to prove that the structure of production is indeterminate.30  For example, college graduates

who studied engineering may represent a different type of labor than those who majored in

English.  Indeed, every individual may constitute a different factor.  However, there is a danger in

using factors that are excessively disaggregated, since they may generate tautologically true

relations between, say, agricultural workers and agricultural output.  Moreover, if our tests fail

because of the unavailability of data on finely specified factors, then the theory itself is ultimately

not very useful, since researchers do not have access to this type of information in practice.  We

therefore focus on the set of factors that can be found in national or international data sets to see

if these additional variables can improve the fit of the FED model.31

                                               
29See Courant and Deardorff (1992) for a discussion of problems arising from lumpiness.
30This is related to the more general problem of determining what are economically meaningful factors

and goods.  As Melvin (1968, p. 1265) and Leamer and Levinsohn (1995, p. 1363) acknowledge, we have not
made much progress toward answering this fundamental question.

31One possible approach to searching for omitted factors is to test if the residuals have a factor analytic
structure.  The idea being that if there were omitted factors, they might turn up in the residuals.  At the suggestion
of a referee we conducted principal components analysis of the residuals.  This did uncover a variety of correlations
between residuals across sectors.  Unfortunately, it is difficult to interpret these results. The problem with this
approach can be seen by contemplating a three-good, two-factor model.  While this is a classic case of
indeterminacy the aggregate resource constraint will impose a clear structure on the residuals.  If one region has
low output in sectors one and three then output in sector two must be high and vice versa.  Hence correlations
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Previous studies using international data suggest that additional factors (for which we can

obtain measures) are unlikely to provide great improvements of the fits of cross-sectional

regressions of trade on factor endowments.  For example, when Leamer (1988b) looked at the

question of how many factors should be included in a model predicting international trade flows

on the basis of factor endowments, he found that he could reject models using more than nine (out

of eleven potential) factors.  Many of the factors that Leamer considered potentially relevant for

international trade, such as illiterate workers, tropical land, desert land, coal production, oil and

gas production, and mineral production are either non-existent in Japan or exist only in extremely

small amounts.  Consequently, it is doubtful that these factors significantly affect Japanese

production.32  Even before we begin the search for missing factors, then, there is reason to be

skeptical that adding more factors will greatly improve the fits.

The most obvious missing factor is land. In principle, we could have used eight different

land factors, but since many of the land categories just represent different types of fields or

construction, we decided to use two aggregated land variables.  The first category was usable

urban and farm land, and the second consisted of undeveloped mountain and forest land.  To

consider the effects of using finer measures of human capital, we also decomposed our two

measures of labor endowments into four educational classes: 4-year college and above, 2-year

college, high school, and less than high school.

We considered three specifications: (1) the basic three-factor model, with unskilled labor,

skilled labor, and capital; (2) a five-factor model, with the original three factors plus two types of

land; and (3) a seven-factor model, with four categories of labor, two land variables, and capital.

Prediction errors and R2’s for the last two specifications are presented in Tables 9a and

9b.  (Complete regression results are reported in Table A1 and A2 of the Results Appendix.)

Overall, there is some improvement in the adjusted R2's of the regressions, especially in land-

                                                                                                                                                      
among residuals will quite naturally occur even in the absence of omitted factors.  Thus, while factor analysis
shows finds some correlation our residuals, we are hesitant to interpret this as evidence in favor of omitted factors.

32Japan has no deserts or tropical land.  Leamer (1984) reports that less than 1% of the labor force is
illiterate in Japan.  Furthermore, only 0.1% of the labor force is employed in mining.
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intensive sectors like agriculture.  However, the average prediction errors do not improve.  Even

after incorporating additional factors, the FED production model yields prediction errors that are

around 25 times larger than those obtained from the HOV model of production.  Thus, additional

factors do not contribute to the predictive power of the FED production model.

Through statistical tests, we can determine more formally the optimal number of factors.

In particular, we followed Bowen et al. (1987), Leamer (1988b), and Trefler (1995) in applying

the Schwartz criterion:

log(Li) - p/2*log(n)

where Li is the maximized likelihood under hypothesis i, p is the number of parameters and n is

the number of observations.  The preferred specification is the one with the largest Schwartz

criterion.  The Schwartz criterion has a number of inherent advantages: it is derivable from

Bayesian principles, it performs well in Monte Carlo studies, and it asymptotically identifies the

correct model with probability one.33

Table 6 shows that the basic three-factor model is the preferred specification, as evaluated

by the Schwartz criterion.  Combined with the fact that equation-by-equation estimation using

more factors did not produce better estimates of production, this evidence suggests that missing

factors (at least those for which we can obtain data) cannot explain the poor fit of the FED

production model.  We conclude that production indeterminacy is a major problem for this data

sample.

                                               
33One referee made the useful suggestion that we employ the likelihood ratio test.  By this standard, the

seven-factor model performs best, with a test statistic of χ2
[116] = 270 (p-value = 0.000) relative to the three-factor

model, and χ2
[58] = 126 (p-value = 0.000) relative to the five-factor model.  This divergence between the results

obtrained from the likelihood ratio test and those from the Schwartz criterion is not unusual.  Indeed, the authors
of Bowen et al. (1987), Leamer (1988b), and Trefler (1995) would have all chosen more highly parameterized
specifications had they used the likelihood ratio test rather than the Schwartz criterion.  These discrepancies arise
from the fact that the two procedures answer different questions.  The likelihood ratio test gives the probability of
finding points where our data are, assuming that the null hypothesis is true.  By contrast, the Schwartz criterion
takes the data distribution as given and asks which model specification best describes the data.  Our analysis is
more concerned with the latter question.
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D.  Trade Costs and Indeterminacy

We argued earlier that trade costs may help resolve production indeterminacy arising from

the existence of more goods than factors.  This provides us with two additional ways to analyze

the data.  First, we examine whether there are any differences between the performance of the

FED model across tradable and non-tradable sectors in the regional data.  Then we employ the

same battery of tests used earlier on an international data set, where trade costs are likely to be

ubiquitous, and compare the results with those obtained previously on regional data.

1. Trade Costs and Regional Data

Figure 3 demonstrates that in a data set where the number of traded goods exceeds the

number of factors and in which certain sectors are traded at cost while other sectors are freely

traded, the FED model should work for non-traded goods but not for tradables.  This is precisely

what we see in the regional data.  The average prediction error for non-tradable sectors is only

20%, which is quite close in magnitude to the 13% average error obtained from tests of the HOV

model of production.  By contrast, the average prediction error for manufactures exceeds 400%,

or 20 times that for non-tradables.  This huge divergence is consistent with a world in which trade

costs partially alleviate the production indeterminacy arising from the existence of more goods

than factors.

2.  Testing the HOV Model on International Data

We now examine how our results change when we apply the same tests used on Japanese

prefectural data to cross-country data.  There are two principal differences between the two types

of data.  First, technology differences, measurement errors, and other problems are likely to

plague the HOV framework when applying it to international as opposed to regional data.  Most

of these problems are likely to generate worse fits for both the HOV and the FED models of

production.   The second important difference, higher trade costs at the international level, has

differential effects on the two models.  To the extent that trade costs mitigate indeterminacy, the
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FED model may perform better on international than on regional data, even if the HOV model

fails at the international level.  Whether this is actually the case is an empirical question to which

we now turn.

We begin by first examining how well the HOV model of production describes the

international data.  In Table 11, we calculate the average percentage deviations between BX and

V for international data, just as we did for the regional sample in Table 5.34  The fit of the HOV

model is far worse at the international level.  The average prediction error (|BX - V|/V) is 81% for

international data, or about six times larger than the 13% obtained using regional data.35  Notice

that even the smallest error for the cross-country sample (22% for Finland) exceeds the average

error for the regional data.

Reinforcing this point are the results obtained from running the Rybczynski “correlation”

tests on the international data.  Of course, given that BX ≠ V, there is no sound theoretical

foundation for performing these tests at the international level.  However, when juxtaposed with

the regional results, the international results provide a useful indication of the tests’ explanatory

power.  Table 12 shows that the multidimensional Rybczynski “correlation” performs relatively

poorly at the international level.  Of the 570 possible sign checks, 154 elements (27%) have the

wrong sign, compared to only 5% in the tests using prefectural data.  In general, the within-factor

correlations are far lower than the extremely high values obtained for Japanese regions.  More

significantly, when we eliminate the influence of size by conducting cross-factor correlations, we

obtain values approximating 0.35 rather than the 0.81 obtained using regional data.  At the

international level, there is not the tight link between technology, factor endowments, and outputs

predicted by the HOV model and prevailing at the regional level.  This tends to support the

growing literature that suggests that there exist important differences in international production

techniques.

                                               
34We could not include Japan in our sample since it would fit by construction.
35 In an earlier draft, we reported a higher number for a sample that included the Netherlands.  This was

due to an incompatibility of the Netherlands data with the rest of the sample.  We therefore have deleted the
Netherlands from the sample.
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3.  Testing the FED Model on International Data

We next examine the FED model using a cross-section of countries.  Having established

that our sample of countries does not use identical production techniques and given that data

problems such as measurement error are likely to be more severe for countries than for regions,

we might reasonably expect the fits of the FED model to be worse on the international data.

However, it is possible that higher trade costs at the international level could work in the opposite

direction, leading to better fits of the FED model.

We address this empirical question by regressing output on factor endowments for the

OECD, using the same set of manufacturing industries employed in the analysis of prefectures.36

In our international regressions, we include the three factors used in our basic specification, as

well as arable land and mineral endowments.  We add the latter two factors because they have

been used in previous studies, and because they are likely to be more relevant for international

comparisons.

One striking feature of the results is that the explanatory power of these regressions, as

measured by the adjusted R2, is much higher than those obtained for the regional sample (cf.

Tables 9a and 9b).  As Table 13 indicates, the regressions of output on factor endowments using

international data have an average R2 of 0.86 and an average adjusted R2 of 0.84—almost double

those of our five-factor runs on prefectures.37  The high adjusted R2’s obtained from the

international regressions are of the same magnitude as those obtained in other studies of this type,

                                               
36Note that the sample used in testing the FED model of production is different from that used to test the

HOV model of production.  The reason for the difference in sample coverage is as follows.  To compare BX = V,
we needed production data on all 29 sectors.  Thus, we had to omit some OECD countries for which we did not
have the necessary data (e.g., Great Britain), and we included a number of non-OECD countries for which we did
have this data (e.g., Argentina).  We could have included more nations in the regressions of X on V, but we elected
to use only the OECD countries to facilitate comparisons with previous studies by Harrigan (1995) and Davis and
Weinstein (1996).

37We were also concerned that the higher R2's might be the result of using only 22 observations and 6
regressors, so we also reran our prefectural results with only 22 prefectures but obtained R2's and adjusted R2's
similar to those obtained from runs with 47 prefectures.
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such as Harrigan (1995) and Davis and Weinstein (1996), and provide a preliminary indication

that the FED model performs better at the international level than at the regional level.38

Turning to the prediction errors, which we consider to be a more telling measure of the

model’s accuracy, we find that the factor-endowment-driven production model fares worse than it

did in previous studies of international data.  The average prediction error is 67%, or more than

1.5 times the value reported by Harrigan in a time-series analysis of the same data.39  The cross-

sectional variation in OECD output appears even harder to explain than the time-series variation.

Nonetheless, like the R2’s, the prediction errors exhibit better performance for the international

sample than for the regional sample.  The 67% average prediction error is only one-sixth as large

as that obtained for the same tradable industries using regional data. These results cast further

doubt on the conjecture that missing factors may be explaining our regional results.  If missing

factors are important in explaining the poor fits of the regional runs, then these missing factors

must be relatively unimportant in explaining international specialization.  Since most missing

factors that one might think of would matter more for international rather than intranational

specialization, the possibility that missing factors are driving our results seems even more remote.

Trade costs, however, do offer a potential explanation for the superior international fits.40

It is reasonable to conjecture that trade costs are larger and more pervasive at the international

level, and thus eliminate more of the overall indeterminacy.  If so, the high R2's obtained from

international data may tell us less about the performance of the factor-endowments-driven

production model per se than about the interaction between the production model, the

consumption model, and trade costs.

                                               
38Leamer (1984) obtained R2's of around 0.6, but his data sample included a much larger and more

diverse set of countries than our study and the other two papers mentioned in the text.
39 Aside from the fact that we use cross-sectional data and Harrigan used time-series, the main reason for

the difference in the fits is that we include two countries that are large outliers in productivity and endowments that
were dropped from Harrigan’s analysis: Turkey and Yugoslavia.  If we had dropped these countries our fits would
have improved, but since our point was to show that the international fits are significantly better than the regional
ones, we were hesitant to trim the sample in our favor.

40 Another possibility is that the higher variance in the international data makes it easier to obtain higher
R2.  To correct for this possible bias, we deleted the largest and smallest countries in the sample (the US and New
Zealand).  As one can see in Table 3, this reduces the variation in the international sample to a level similar to that
in the regional.  Using this smaller variance sample had no impact or actually improved the international fits.
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In summary, the production estimates derived from regressions of outputs on factor

endowments are far from perfect at the international level, with an average prediction error of

67%.  As at the regional level, there appears to be a significant amount of production

indeterminacy, consistent with the existence of more goods than factors.  However, the output

estimates for the OECD sample are substantially more accurate than those obtained for the

regional one.  At first glance, this finding seems odd, since identical production techniques prevail

across Japanese prefectures but not across countries.  We can explain this discrepancy, along with

the dramatically better fits of the FED model for non-tradables than for tradables within the

regional sample, by invoking trade costs.  In theory, trade costs can impose some structure on

production patterns when there are more goods than factors; in practice, we find that production

indeterminacy is lowest in contexts where we would expect trade costs to be highest.

Notice that this result is precisely the opposite of what is commonly assumed in empirical

analysis.  Several investigators [e.g., Saxonhouse (1983, 1986, 1989), Leamer (1988a, 1988b),

and Noland (1993)] have regressed trade on factor endowments and then interpreted large

residuals as an indication of trade barriers.  Our results suggest that the residuals will be larger in

the absence of trade barriers and other trade costs.  Using these residuals to estimate trade

barriers is therefore likely to produce a backward result.  Indeed, our analysis provides an

explanation for the puzzle identified by Pritchett (1996), namely the negative correlations between

Leamer’s (1988b) measures of openness and observed measures of tariffs, non-tariff barriers, and

price distortions.

VI.  Conclusion

Trade economists have long known that, if there were more goods than factors, it would

be impossible to predict outputs solely on the basis of factor endowments.  However, for the most

part the implications of this theoretical conclusion have been disregarded.  In empirical work, it is

often assumed that the world behaves “as if” production were determinate.  Theorists, too, have

sometimes dismissed the possibility of production indeterminacy, as exemplified by Xu’s (1993)
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contention that “the problem of indeterminate trade pattern should be regarded as an intellectual

curiosity, rather than a real world phenomenon.”

However, in this paper we demonstrate that production indeterminacy is substantial in the

type of real-world data sets typically used by empirical trade economists.  Moreover, we discover

that the degree of indeterminacy is greatest when trade barriers and trade costs are relatively low,

e.g., for regional data and for manufactured goods.

We arrived at these conclusions by utilizing both regional and international data.  Using

regional data, we verified the HOV model of production and the multidimensional Rybczynski

relationship derived by Ethier.  In doing so, we established that the regional data sample was not

subject to many of the possible reasons that the HOV model might fail—e.g., scale economies,

heterogeneous technologies, regional industrial policy, lumpy regions, and measurement error.

Given this, our finding that the FED model of production performs terribly at the regional level

suggests either that the world is best described as having more goods than factors, or that there

are missing factors.  Unable to identify additional factors that improved our predictions of

production patterns, we therefore concluded that the “square” assumption of equal numbers of

goods and factors does not provide a good approximation of reality.

For international data, by contrast, the HOV model of production is an empirical failure.

Countries do not appear to use identical techniques of production.  Nonetheless, when we used

international data on factor endowments to predict outputs, the regression fits (as measured by

R2) were substantially better and the prediction errors much smaller than they were for the

regional data set.  We surmised that the improved ability to predict production patterns at the

international level is the result of trade barriers and other international trade costs putting some

structure on national production patterns.  Much the same phenomenon was observed in the

regional data, where prediction errors were 20 times lower for non-tradables than for tradables.

These results thus support Leamer’s (1984) and Xu’s (1993) contention that trade costs act to

reduce production indeterminacy.  They do not completely eliminate the indeterminacy, however.
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A practical implication of our results is that one should exercise great caution in

interpreting regressions of production (or commodity trade) on factor endowments.  These

regressions typically generate high R2's on international data, but this result is merely reflective of

the correlation between trade and factor endowments and of the interaction of these two elements

with trade costs.  The estimated coefficients do not correspond to Rybczynski derivatives in the

theoretically specified manner.

A primary application of such regressions has been the estimation of trade barriers.  Some

previous researchers [e.g., Saxonhouse (1983, 1986, 1989) and Leamer (1988a, 1988b)] have

regressed trade on factor endowments and then interpreted the residuals as an indication of trade

barriers.  Ironically, we find that the residuals are likely to be much larger in the absence of trade

barriers and other trade costs.  Our results therefore explain the disconcerting finding of Pritchett

(1996): the observed negative correlation between Leamer’s (1988b) measures of openness and

conventional measures of tariffs, non-tariff barriers, and price distortions.

One important finding of ours is that, within sets of regions that are not separated by trade

barriers or segmented by high trade costs, the strongest relationship between outputs and factor

endowments that can be maintained is the HOV model of production.  However, trade costs do

render a certain degree of determinacy at the international level.  This two-tiered structure of

production suggests that theorists and empirical economists should try to build trade costs

explicitly into their trade models.

In order to make progress in understanding the location of production (and hence patterns

of commodity trade), it is necessary to acknowledge that the world is not square.  Instead of

treating production indeterminacy as a nuisance to be eliminated by assumption, we must confront

this phenomenon directly.
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Figure 1: Trade Costs and Production Indeterminacy
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Figure 2: Trade Costs and Production Indeterminacy
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Figure 3: Trade Costs and Production Indeterminacy
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Figure 5:  Predicted Versus Actual Endowment

 (Weight = 1/SQRT(GDP), Endowments expressed as a

share of Japan total)

Theoretical Prediciton
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Figure 6:  Predicted Versus Actual Output

(3 Factors, Weight = 1/SQRT(GDP),

Output expressed as a share of Japan total)



 Table 1

Sample Statistics

Japanese Regional Data

Mean Standard
Deviation

Coefficient
of Variation

Minimum Maximum

Number of Non-
College Graduates

1349475 1088710 0.81 372125 5098118

Number of College
Graduates

363057 500328 1.38 62628 2898431

Capital Stock 6433723 6428413 1.00 1469625 35838100

Number of 4-year
College Graduates

231057 342366 1.48 36324 1980297

Number of 2-year
College Graduates

131999 158831 1.20 26304 918127

Number of High
School Graduates

838674 752495 0.90 231544 3697818

Number with less
than High School

510799 352666 0.69 140580 1491256

Arable and Urban
Land

1731 2311 1.33 453 16487

Mountain and Forest
Land

1803 1784 0.99 215 11873

GDP 6833167 9082048 1.33 1327762 55100600



Table 1 (Continued)

International Data

Mean
Standard Deviation

Coefficient
of Variation

Minimum Maximum

Number of Non
College Graduates

14951523 19608955 1.31 992420 79190398

Number of College
Graduates

3306250 8048680 2.43 73008 37609602

Capital Stock 753060000 1303170000 1.73 46403000 5714800000

Arable Land 18860 40437 2.14 771 189799

Mineral Output 146354 409690 2.80 22 1935810

GDP 459701000 855778000 1.86 25541100 3962220000

All nominal variables in the regional data set are expressed as millions of yen.
All nominal variables in the international data set are expressed as thousands of dollars.
Land is in square kilometers in the Japanese data and in thousands of hectares in the
international data.



Table 2

Coefficient of Variation in Regional Output Data

Hokkaido 1.70 Shiga 1.32
Aomori 1.83 Kyoto 1.08
Iwate 1.42 Osaka 0.91
Miyagi 1.45 Hyogo 1.05
Akita 1.36 Nara 1.34
Yamagata 1.57 Wakayama 1.57
Fukushima 1.43 Tottori 1.70
Ibaraki 1.12 Shimane 0.99
Tochigi 1.32 Okayama 1.11
Gumma 1.54 Hiroshima 1.41
Saitama 1.07 Yamaguchi 1.35
Chiba 1.23 Tokushima 1.22
Tokyo 1.25 Kagawa 0.96
Kanagawa 1.34 Ehime 1.07
Niigata 0.94 Kochi 1.04
Toyama 1.07 Fukuoka 0.97
Ishikawa 1.52 Saga 1.31
Fukui 1.50 Nagasaki 1.65
Yamanashi 1.76 Kumamoto 1.17
Nagano 1.68 Oita 1.12
Gifu 0.88 Miyazaki 1.60
Shizuoka 1.18 Kagoshima 2.36
Aichi 1.70 Okinawa 1.96
Mie 1.11 Total Average 1.35



Table 3

Cofficients of Variation for Regional Output or International Production Data

Industry Regional
Data

International
Data

Int'l Data
w/o US &

New Zealand
Agriculture/Fishery 0.75
Mining 1.54
Construction 0.87
Processed Food 0.81 1.94 1.29
Textiles 1.18 1.88 1.38
Apparel 0.94 2.10 1.30
Lumber and Wood 0.67 1.94 1.36
Furniture 1.04 1.65 1.23
Paper & Pulp 1.08 2.37 1.37
Publishing 2.64 2.33 1.43
Chemicals 1.14 2.13 1.52
Petroleum & Coal 1.57 2.56 1.48
Rubber 1.22 2.22 1.98
Leather & Footwear 1.98 1.39 1.22
Ceramics & Glass 0.83 1.81 1.61
Iron & Steel 1.34 1.81 1.74
Non-Ferrous Metals 1.04 2.20 1.36
Metal Products 1.14 2.25 1.79
General Machinery 1.11 2.22 1.75
Electrical Machinery 1.07 2.26 2.23
Transport Machinery 1.91 2.21 1.83
Precision Instrument 1.51 2.58 2.54
Other Manufacturing 1.08
Transportation/Communication 1.47
Electricity/Gas/Water 0.93
Wholesale/Retail 1.56
Finance/Insurance/Real Estate 1.40
Other Services 1.60
Public Administration 0.92
Total Average 1.25 2.10 1.60



Table 4

Coefficients of Variation for Production by Country

Australia 0.88
Austria 0.79
Benelus 0.87
Canada 0.86
Denmark 1.52
Finland 0.97
France 0.93
Germany 0.86
Greece 1.06
Ireland 1.74
Italy 0.74
Japan 0.75
Netherlands 1.34
New Zealand 1.21
Norway 0.98
Portugal 0.89
Spain 0.88
Sweden 0.77
Turkey 1.17
United Kingdom 0.88
USA 0.80
Yugoslavia 0.65
Average 0.98



Table 5
Deviations from the HOV Model of Production

BX

V
− 1

Prefectural Averages

Hokkaido 9% Shiga 7%
Aomori 17% Kyoto 5%
Iwate 13% Osaka 20%
Miyagi 7% Hyogo 5%
Akita 16% Nara 31%
Yamagata 14% Wakayama 11%
Fukushima 18% Tottori 9%
Ibaraki 12% Shimane 17%
Tochigi 14% Okayama 6%
Gumma 11% Hiroshima 6%
Saitama 20% Yamaguchi 8%
Chiba 21% Tokushima 14%
Tokyo 33% Kagawa 10%
Kanagawa 11% Ehime 7%
Niigata 19% Kochi 10%
Toyama 7% Fukuoka 6%
Ishikawa 12% Saga 12%
Fukui 14% Nagasaki 11%
Yamanashi 10% Kumamoto 8%
Nagano 14% Oita 8%
Gifu 6% Miyazaki 11%
Shizuoka 16% Kagoshima 11%
Aichi 15% Okinawa 27%
Mie 11% Total Average 13%

Factor Averages

Non-college 17%
College 14%
Capital 7%
Total Average 13%



Table 6
Correlation Between Endowment Deviations and Factor Intensity of Production

Tests Noncollege College Capital

I.  Sign Tests

(Vi - Vj)TB(Xi - Xj)Negative 61 75 32

% Negative 5.64 6.94 2.96

II.  Within-Factor Correlations

Raw Correlation 0.96 0.99 1.00

Rank Correlation 0.98 0.96 0.99

III.  Cross-Factor Correlations

Average Raw Correlation = 0.84

Average Rank Correlation = 0.78



Table 7: Three Factor Model, Weight =  1
GDP

(Standard Errors in Parentheses, Constant Not Reported)

Dependent Variable Non-College College Capital
Number of

Positive
Observations

R2

Agriculture/Fishery 0.375
(0.152)

-1.548
(0.265)

0.060
(0.036)

47 0.511

Mining -0.039
(0.024)

-0.122
(0.042)

0.022
(0.006)

47 0.290

Construction 0.157
(0.123)

-0.022
(0.215)

0.160
(0.029)

47 0.882

Processed Food 0.647
(0.192)

-0.524
(0.334)

0.019
(0.046)

47 0.566

Textiles 0.049
(0.194)

-0.124
(0.338)

0.020
(0.046)

47 0.006

Apparel 0.075
(0.043)

0.016
(0.075)

-0.009
(0.010)

47 0.014

Lumber and Wood 0.048
(0.041)

-0.247
(0.072)

0.016
(0.010)

47 0.226

Furniture 0.052
(0.026)

-0.001
(0.045)

-0.003
(0.006)

47 0.223

Paper & Pulp 0.297
(0.108)

-0.059
(0.187)

-0.028
(0.026)

47 0.236

Publishing -0.475
(0.122)

0.677
(0.213)

0.094
(0.029)

47 0.629

Chemicals 0.585
(0.324)

1.152
(0.563)

-0.102
(0.077)

47 0.282

Petroleum & Coal -0.071
(0.360)

0.837
(0.627)

0.014
(0.085)

47 0.123

Rubber 0.068
(0.047)

0.064
(0.081)

-0.005
(0.011)

45 0.250

Leather & Footwear -0.004
(0.020)

0.102
(0.035)

-0.001
(0.005)

44 0.360

Ceramics & Glass 0.198
(0.110)

-0.065
(0.192)

-0.006
(0.026)

47 0.105

Iron & Steel 0.189
(0.315)

0.488
(0.548)

0.014
(0.075)

47 0.264

Non-Ferrous Metals 0.299
(0.076)

0.092
(0.132)

-0.030
(0.018)

43 0.278



Table 7 (Continued)

Dependent Variable Non-College College Capital
Number of

Positive
Observations

R2

Metal Products 0.335
(0.167)

0.438
(0.291)

-0.034
(0.040)

47 0.393

General Machinery 0.825
(0.324)

1.238
(0.565)

-0.115
(0.077)

47 0.446

Electrical Machinery 1.207
(0.478)

1.774
(0.831)

-0.201
(0.113)

47 0.331

Transport Machinery 1.125
(0.815)

0.470
(1.419)

-0.064
(0.194)

47 0.251

Precision Instrument 0.049
(0.092)

0.116
(0.161)

-0.0006
(0.022)

47 0.140

Other Manufacturing 0.526
(0.147)

0.601
(0.256)

-0.091
(0.035)

47 0.429

Transport & Com. -0.682
(0.137)

0.904
(0.238)

0.205
(0.033)

47 0.852

Electricity/Gas/Water -0.043
(0.159)

-0.131
(0.276)

0.079
(0.038)

47 0.338

Wholesale/Retail -1.219
(0.398)

0.975
(0.694)

0.433
(0.095)

47 0.723

Finance/Ins./Real Est. -0.626
(0.223)

2.082
(0.389)

0.214
(0.053)

47 0.857

Other Services -2.078
(0.438)

2.141
(0.763)

0.600
(0.104)

47 0.788

Public Administration -0.096
(0.095)

-0.170
(0.166)

0.141
(0.023)

47 0.796



Table 8
Errors in Prediction of Output

ΩV

X
− 1

(Three Factors, 1/SQRT(GDP) Weighting)

Prefectural Averages

Hokkaido 503% Shiga 120%
Aomori 575% Kyoto 287%
Iwate 303% Osaka 112%
Miyagi 115% Hyogo 42%
Akita 161% Nara 226%
Yamagata 167% Wakayama 160%
Fukushima 75% Tottori 423%
Ibaraki 50% Shimane 279%
Tochigi 90% Okayama 50%
Gumma 116% Hiroshima 158%
Saitama 122% Yamaguchi 187%
Chiba 124% Tokushima 426%
Tokyo 271% Kagawa 50%
Kanagawa 156% Ehime 279%
Niigata 110% Kochi 469%
Toyama 70% Fukuoka 151%
Ishikawa 332% Saga 384%
Fukui 241% Nagasaki 2131%
Yamanashi 270% Kumamoto 376%
Nagano 183% Oita 68%
Gifu 165% Miyazaki 523%
Shizuoka 60% Kagoshima 1007%
Aichi 49% Okinawa 2120%
Mie 53% Total Average 304%



Table 8 (Continued)

Industry Averages

Agriculture/Fishery 56%
Mining 120%
Construction 9%
Processed Food 37%
Textiles 294%
Apparel 93%
Lumber and Wood 45%
Furniture 102%
Paper & Pulp 117%
Publishing 91%
Chemicals 406%
Petroleum & Coal 2165%
Rubber 419%
Leather & Footwear 539%
Ceramics & Glass 49%
Iron & Steel 312%
Non-Ferrous Metals 945%
Metal Products 82%
General Machinery 336%
Electrical Machinery 516%
Transport Machinery 556%
Precision Instrument 1266%
Other Manufacturing 141%
Transportation/Communication 20%
Electricity/Gas/Water 38%
Wholesale/Retail 26%
Finance/Insurance/Real Estate 15%
Other Services 23%
Public Administration 12%
Total Average 304%



Table 9a
Errors in Prediction of Output

ΩV

X
− 1

(Five Factors, 1/SQRT(GDP) Weighting)

Prefectural Average Errors

Hokkaido 243% Shiga 109%
Aomori 369% Kyoto 282%
Iwate 239% Osaka 86%
Miyagi 136% Hyogo 46%
Akita 78% Nara 233%
Yamagata 115% Wakayama 161%
Fukushima 78% Tottori 344%
Ibaraki 51% Shimane 454%
Tochigi 78% Okayama 51%
Gumma 93% Hiroshima 176%
Saitama 108% Yamaguchi 206%
Chiba 75% Tokushima 463%
Tokyo 273% Kagawa 52%
Kanagawa 158% Ehime 286%
Niigata 144% Kochi 776%
Toyama 76% Fukuoka 184%
Ishikawa 353% Saga 338%
Fukui 340% Nagasaki 2253%
Yamanashi 231% Kumamoto 345%
Nagano 196% Oita 62%
Gifu 224% Miyazaki 549%
Shizuoka 63% Kagoshima 866%
Aichi 38% Okinawa 2314%
Mie 55% Total Average 305%



Table 9a (Continued)

Industry Average Errors and Regression R2's

Industry Error R2

Agriculture/Fishery 35% 0.780
Mining 118% 0.349
Construction 9% 0.910
Processed Food 35% 0.584
Textiles 248% 0.207
Apparel 79% 0.172
Lumber and Wood 39% 0.346
Furniture 95% 0.365
Paper & Pulp 108% 0.252
Publishing 96% 0.637
Chemicals 334% 0.363
Petroleum & Coal 2244% 0.142
Rubber 398% 0.375
Leather & Footwear 533% 0.361
Ceramics & Glass 47% 0.173
Iron & Steel 298% 0.329
Non-Ferrous Metals 1117% 0.394
Metal Products 73% 0.545
General Machinery 294% 0.605
Electrical Machinery 540% 0.364
Transport Machinery 569% 0.405
Precision Instrument 1278% 0.146
Other Manufacturing 133% 0.553
Transportation/Communication 21% 0.859
Electricity/Gas/Water 35% 0.389
Wholesale/Retail 28% 0.767
Finance/Insurance/Real Estate 15% 0.860
Other Services 24% 0.791
Public Administration 11% 0.852
Total Average 305% 0.478



Table 9b
Errors in Prediction of Output

ΩV

X
− 1

(Seven Factors, 1/SQRT(GDP) Weighting)

Prefectural Average Errors

Hokkaido 279% Shiga 65%
Aomori 432% Kyoto 209%
Iwate 180% Osaka 78%
Miyagi 150% Hyogo 45%
Akita 123% Nara 238%
Yamagata 193% Wakayama 158%
Fukushima 79% Tottori 771%
Ibaraki 48% Shimane 653%
Tochigi 106% Okayama 51%
Gumma 39% Hiroshima 126%
Saitama 58% Yamaguchi 206%
Chiba 55% Tokushima 347%
Tokyo 190% Kagawa 62%
Kanagawa 153% Ehime 295%
Niigata 143% Kochi 760%
Toyama 86% Fukuoka 192%
Ishikawa 247% Saga 403%
Fukui 448% Nagasaki 1985%
Yamanashi 179% Kumamoto 284%
Nagano 166% Oita 76%
Gifu 86% Miyazaki 567%
Shizuoka 51% Kagoshima 928%
Aichi 41% Okinawa 3014%
Mie 50% Total Average 316%



Table 9b (Continued)

Industry Average Errors and Regression R2's

Industry Error R2

Agriculture/Fishery 32% 0.798
Mining 115% 0.366
Construction 9% 0.928
Processed Food 35% 0.605
Textiles 300% 0.241
Apparel 79% 0.223
Lumber and Wood 39% 0.349
Furniture 94% 0.404
Paper & Pulp 131% 0.274
Publishing 104% 0.697
Chemicals 501% 0.474
Petroleum & Coal 2200% 0.370
Rubber 355% 0.405
Leather & Footwear 525% 0.362
Ceramics & Glass 47% 0.192
Iron & Steel 347% 0.523
Non-Ferrous Metals 852% 0.419
Metal Products 73% 0.547
General Machinery 316% 0.606
Electrical Machinery 406% 0.368
Transport Machinery 657% 0.417
Precision Instrument 1652% 0.171
Other Manufacturing 158% 0.570
Transportation/Communication 21% 0.866
Electricity/Gas/Water 36% 0.472
Wholesale/Retail 30% 0.784
Finance/Insurance/Real Estate 16% 0.870
Other Services 23% 0.817
Public Administration 11% 0.872
Total Average 316% 0.517



Table 10

Comparison of Models Using the Schwartz Criterion

Model Log-
Likelihood

Schwartz
Criterion

Three Factor Model -11,502 -11,921
Five Factor Model -11,430 -12,058
SevenFactor Model -11,367 -12,205

The Schwartz criterion = log(likelihood) - p/2*log(n), where p is the number of estimated parameters and n
is the number of observations.  Higher values are preferred.

3-factor model: non-college-educated labor, college-educated labor, and capital
5-factor model: same as above, plus usable land and undeveloped mountain/forest land
7-factor model: capital, the 2 land variables, and 4 labor variables corresponding to the level of

education (below high school, high school, two-year college, four-year college)



Table 11

Average Prediction Error for Factor Endowments Using International Data
BX

V
− 1

Country Averages

Argentina 91%
Austria 171%
Canada 28%
Finland 22%
Germany (West) 333%
India 72%
Indonesia 61%
Ireland 80%
Israel 29%
Italy 110%
Mexico 56%
New Zealand 115%
Norway 59%
Philippines 53%
Portugal 42%
Singapore 101%
Spain 38%
Thailand 51%
Turkey 48%
U.S.A. 67%
Total Average 81%

Factor Averages

Capital Stock Non-College-
Educated Labor

College
Graduates

All Factors

All Countries 54% 71% 119% 81%



Table 12
Correlation Between Endowment Deviations and Factor Intensity of Production

for International Data

Tests Noncollege College Capital

I.  Sign Tests

(Vi - Vj)TB(Xi - Xj)Negative 43 66 45

% Negative 22.6 34.7 23.7

II.  Within-Factor Correlations

Raw Correlation 0.21 0.24 0.20

Rank Correlation 0.60 0.34 0.75

III.  Cross-Factor Correlations

Average Raw Correlation = 0.37

Average Rank Correlation = 0.34



Table 13
Average Prediction Error for Outputs and Regression R2's

Using International Data (5 Factors, 1/SQRT(GDP) Weighting)

Country Average Errors
Australia 73%
Austria 26%
Belgium/Luxembourg 44%
Canada 31%
Denmark 64%
Finland 42%
France 43%
Germany (West) 45%
Great Britain 20%
Greece 66%
Ireland 101%
Italy 48%
Japan 14%
Netherlands 86%
New Zealand 76%
Norway 114%
Portugal 97%
Spain 41%
Sweden 50%
Turkey 308%
United States 7%
Yugoslavia 69%
Total Average 67%

Industry Average Errors and Regression R2's
Industry Error R2

Processed Food 25% 0.911
Textiles 43% 0.876
Apparel 50% 0.918
Lumber and Wood 50% 0.744
Furniture 34% 0.763
Paper & Pulp 98% 0.720
Publishing 42% 0.869
Chemicals 36% 0.960
Petroleum & Coal 111% 0.853
Rubber 50% 0.896
Leather & Footwear 78% 0.610
Ceramics & Glass 25% 0.896
Iron & Steel 50% 0.881
Non-Ferrous Metals 49% 0.942
Metal Products 35% 0.915
General Machinery 54% 0.954
Electrical Machinery 64% 0.873
Transport Machinery 53% 0.960
Precision Instrument 317% 0.863



Total Average 67% 0.863



DATA APPENDIX

PREFECTURAL ENDOWMENTS
The numbers of workers by educational attainment were entered by prefecture directly from the
Employment Status Survey of 1987 (Shugyo Kozo Kihon Chosa Hokoku). The capital stocks were
imputed from prefectural investment data. Japan’s yearly Prefectural Accounts (Kenmin Keizai
Keisan Nempo) give investment flows for each prefecture from 1975 to 1985. These flows were
used to impute capital stock levels for each prefecture in 1985, using capital goods price deflators
from the National Accounts (Kokumin Keizai Keisan Nempo) and a rate of depreciation of 0.133
(This was the same rate of depreciation used by Bowen, Leamer, and Sveikauskas (1987)). Each
year’s flow was deflated using a capital deflator from the National Accounts.

WORLD ENDOWMENTS
World endowments of capital stocks were calculated using investment flows between 1975 and
1985 from the Summers and Heston (1988) data set.  As in the prefectural data, we used a
perpetual inventory method (with a depreciation rate of 0.133) and capital price deflators from
Summers and Heston to calculate capital stocks. In order to maintain compatibility with Davis,
Weinstein et al. (1997) world endowments of labor force by educational level were taken from the
UNESCO Statistical Yearbook. Once again we had a scaling problem arising from the fact that the
Summers and Heston numbers and the UNESCO numbers did not match the Japanese numbers
exactly. We therefore scaled each country’s capital stock by the ratio of our calculated Japanese
capital stock to the Summers and Heston value for the Japanese capital stock. The imputed
international labor endowments were similarly scaled by the proportional difference between the
UNESCO numbers and the actual Japanese endowments.  For our regressions of international
output on endowments, land data was taken from Leamer (1984) and mineral output data from
Davis and Weinstein (1996).  Education data was taken from Reeve (1998).  Reeve assembled a
broad cross-section of education endowment data by using Barro and Lee data on shares of the
population over 25 with various levels of education (from the UNESCO source above) and
multiplying it by labor force numbers from Summers and Heston.

PREFECTURAL PRODUCTION
The gross output of 20 manufacturing sectors in each prefecture was taken from the Japanese
Census of Manufactures for 1985.  The gross output of 9 non-manufacturing sectors in each
prefecture was taken from the Prefectural Accounts for 1985.  Finally, these totals were scaled so
that the 47-prefectural total for each sector exactly matched the total Japanese output as reported
in the 1985 Input-Output Table of Japan.  Thus, in effect, the data from the Census of
Manufactures and from the Prefectural Accounts was used in order to distribute total Japanese
output for each sector across the 47 prefectures as accurately as possible.

WORLD PRODUCTION
Data on international levels of production used in tests of BX = V came from the United Nations'
National Accounts Statistics: Main Aggregates and Detailed Tables, 1985. These numbers
differed slightly from the numbers reported in the Japanese IO table, so the output of each sector
in every country’s output was scaled by the factor necessary to make the international data on
Japan match the IO data.  Where countries only reported value added rather than gross output,
we scaled the value added by the ratio of gross output to value added in that sector in Japan.  The



data were then converted to Yen using exchange rate data from the IMF’s International
Financial Statistics.

Because the COMTAP database provides more detailed sales numbers than the UN, we used
COMTAP data for our regressions Data on OECD production was taken from the COMTAP
Database.  This data was graciously provided by James Harrigan and is available in Feenstra et al.
(1997)

TECHNOLOGY
Each element of the 3x29 technology matrix B was calculated by dividing Japanese total output
for the 29 sectors into the number of each factor present in each sector. Most of the data on
college and non-college workers in each sector came from the 1988 Wage Census. There were
some gaps in this data as follows: 1) There was no data for college and non-college workers for
agriculture, forestry, and fisheries or for government. These numbers were taken from the 1987
Employment Status Survey. 2) There was also no data for the petroleum/coal and leather
industries. Total employment for each of these sectors was taken from the 1985 Census of
Manufactures. The number of college workers per unit output for each was then imputed by
assuming that petroleum/coal has the same fraction of college workers as the chemicals sector and
that leather has the same fraction as manufacturing overall. The capital stocks in each of the 29
sectors were imputed from investment numbers, using the Annual Report of the Corporation
Survey for non-manufacturing and the Census of Manufactures for manufacturing.



RESULTS APPENDIX

The following tables give regression outputs for the indicated specifications.

Table A1: Prefectural Data, 5-Factor Model

Table A2: Prefectural Data, 7-Factor Model

Table A3: International Data, 5-Factor Model



Table A1: Prefectural Data, 5-Factor Model

(Standard Errors in Parentheses, Constant Not Reported)

Dependent
Variable

Non-
College

College Capital Usable
Land

Mountain
or Forest R2

Agriculture/Fishery 0.303
(0.110)

-0.364
(0.252)

-0.262
(0.029)

110.6
(18.811)

-2.50
(16.622)

0.780

Mining -0.043
(0.025)

-0.049
(0.058)

0.016
(0.007)

7.08
(4.31)

-0.556
(3.81)

0.172

Construction 0.132
(0.116)

0.584
(0.267)

0.113
(0.030)

66.2
(19.9)

-5.95
(17.6)

0.910

Processed Food 0.651
(0.203)

-0.221
(0.465)

-0.007
(0.053)

45.8
(34.6)

-27.4
(0.606)

0.584

Textiles 0.107
(0.184)

-1.10
(0.421)

0.092
(0.048)

-92.3
(31.4)

3.62
(27.7)

0.207

Apparel 0.074
(0.042)

-0.131
(0.097)

0.004
(0.011)

-21.0
(7.20)

11.3
(6.36)

0.172

Lumber and Wood 0.031
(0.041)

-0.155
(0.094)

0.012
(0.011)

-0.832
(7.03)

14.21
(6.21)

0.346

Furniture 0.057
(0.026)

-0.118
(0.058)

0.006
(0.007)

-11.6
(4.36)

1.47
(3.85)

0.365

Paper & Pulp 0.291
(0.115)

-0.142
(0.264)

-0.020
(0.030)

-16.8
(19.6)

13.9
(17.4)

0.252

Publishing -0.461
(0.131)

0.497
(0.300)

0.106
(0.034)

-14.6
(22.3)

-2.95
(19.7)

0.637

Chemicals 0.601
(0.330)

0.160
(0.755)

-0.021
(0.086)

-128
(56.2)

56.6
(49.7)

0.363

Petroleum & Coal -0.122
(0.386)

0.948
(0.882)

0.014
(0.100)

-25.1
(65.7)

54.0
(58.0)

0.142

Rubber 0.073
(0.045)

-0.123
(0.102)

0.010
(0.012)

-16.9
(7.59)

-1.25
(6.70)

0.375

Leather & Footwear -0.006
(0.021)

0.100
(0.048)

-0.0007
(0.005)

-0.163
(3.55)

-5.09
(3.14)

0.361



Table A1 (Continued)

Dependent
Variable

Non-
College

College Capital Usable
Land

Mountain
or Forest R2

Ceramics & Glass 0.201
(0.114)

-0.340
(0.261)

0.017
(0.030)

-36.7
(19.5)

17.5
(17.2)

0.173

Iron & Steel 0.220
(0.326)

-0.441
(0.744)

0.087
(0.085)

-107
(55.5)

33.6
(49.0)

0.329

Non-Ferrous Metals 0.241
(0.070)

-0.136
(0.161)

-0.014
(0.018)

-13.4
(12.0)

-15.4
(10.6)

0.394

Metal Products 0.419
(0.157)

-0.315
(0.358)

0.014
(0.041)

-40.4
(26.7)

-44.3
(23.6)

0.545

General Machinery 0.951
(0.297)

-0.573
(0.678)

0.014
(0.077)

-157
(50.5)

-14.9
(44.6)

0.605

Electrical Machinery 1.30
(0.505)

0.730
(0.153)

-0.131
(0.131)

-72.3
(85.9)

-36.3
(75.9)

0.364

Transport Machinery 1.32
(0.788)

-3.36
(1.80)

0.222
(0.205)

-385
(134)

51.0
(118)

0.405

Precision Instrument 0.056
(0.100)

0.044
(0.228)

0.004
(0.026)

-4.85
(16.9)

-2.70
(15.0)

0.146

Other Manufacturing 0.589
(0.141)

-0.069
(0.322)

-0.047
(0.037)

-44.8
(24.0)

-25.6
(21.2)

0.553

Transportation
&Communication

-0.685
(0.144)

0.674
(0.331)

0.225
(0.038)

-35.2
(24.7)

21.5
(21.8)

0.859

Electricity/Gas/Water -0.016
(0.165)

-0.590
(0.377)

0.113
(0.043)

-44.4
(28.1)

3.39
(24.8)

0.389

Wholesale/Retail -1.12
(0.396)

-0.677
(0.906)

0.553
(0.103)

-153
(67.5)

1.91
(59.6)

0.767

Finance/Insurance/Real
Estate

-0.623
(0.239)

1.77
(0.546)

0.240
(0.062)

-42.7
(40.7)

21.2
(35.9)

0.860

Other Services -2.06
(0.471)

1.65
(1.08)

0.639
(0.123)

-59.5
(80.3)

21.9
(71.0)

0.791

Public Administration -0.131
(0.088)

0.351
(0.200)

0.103
(0.023)

45.6
(14.9)

3.49
(13.2)

0.852



Table A2: Prefectural Data 7-Factor Model

(Standard Errors in Parentheses, Constant Not Reported)

Dependent Variable Less
Than
HS

High
School

2-year
College

College Capital Land in
Use

Forest
or

Mount.

R2

Agriculture/Fishery 0.563
(0.247)

-0.165
(0.261)

-2.99
(1.87)

0.791
(0.703)

-0.018
(0.029)

115
(18.7)

-7.08
(16.8)

0.798

Mining 0.004
(0.058)

-0.100
(0.062)

0.161
(0.442)

-0.068
(0.166)

0.017
(0.007)

6.77
(4.42)

-1.39
(3.96)

0.366

Construction 0.434
(0.244)

-0.400
(0.258)

5.80
(1.85)

-0.842
(0.695)

0.110
(0.028)

57.8
(18.5)

-21.1
(16.6)

0.928

Processed Food 0.439
(0.463)

1.08
(0.488)

-5.03
(3.51)

1.16
(1.31)

-0.003
(0.053)

53.6
(35.1)

-23.7
(31.4)

0.605

Textiles 0.581
(0.422)

-0.424
(0.444)

0.328
(3.19)

-1.08
(1.20)

0.098
(0.049)

-94.4
(31.9)

-4.62
(28.6)

0.241

Apparel -0.042
(0.096)

0.162
(0.101)

0.465
(0.725)

-0.453
(0.272)

0.0008
(0.011)

-22.0
(7.25)

13.4
(6.50)

0.222

Lumber and Wood -0.007
(0.096)

0.071
(0.101)

-0.219
(0..729)

-0.174
(0..273)

0.011
(0.011)

-0.749
(7.28)

14.9
(6.53)

0.349

Furniture 0.032
(0.044)

0.054
(0.038)

0.534
(0.326)

-0.363
(0.116)

0.005
(0.004)

-12.7
(3.34)

1.93
(3.71)

0.404

Paper & Pulp 0.242
(0.266)

0.245
(0.280)

1.94
(2.01)

-0.891
(0.755)

-0.024
(0.031)

-20.2
(20.1)

14.8
(18.0)

0.274

Publishing -0.129
(0.280)

-1.02
(0.295)

5.76
(2.12)

-0.916
(0.795)

0.103
(0.032)

-23.1
(21.2)

-8.65
(19.0)

0.697

Chemicals -0.220
(0.701)

2.03
(0.739)

-13.5
(5.31)

3.86
(1.99)

-0.013
(0.081)

-106
(53.1)

70.7
(47.6)

0.474

Petroleum & Coal -1.00
(0.773)

1.68
(0.814)

-19.8
(5.85)

6.95
(2.20)

-0.033
(0.089)

8.58
(58.5)

69.1
(52.4)

0.370

Rubber -0.007
(0.102)

0.182
(0.107)

-1.05
(0.770)

0.117
(0.289)

0.010
(0.012)

-15.4
(7.69)

-0.097
(6.89)

0.405

Leather & Footwear 0.0002
(0.049)

-0.859
(0.051)

0.011
(0.369)

0.137
(0.138)

-0.0004
(0.006)

-.012
(3.69)

-0.623
(3.30)

0.362

Ceramics & Glass 0.338
(0.264)

0.133
(0.278)

-1.81
(2.0)

0.297
(0.751)

0.021
(0.031)

-34.2
(20.0)

15.1
(17.9)

0.192

Iron & Steel -1.02
(0.642)

2.18
(0.676)

-16.9
(4.86)

3.75
(1.82)

0.093
(0.074)

-81.0
(48.6)

55.0
(43.6)

0.523

Non-Ferrous Metals 0.176
(0.161)

0.370
(0.170)

-1.59
(1.22)

0.283
(0.458)

-0.013
(0.018)

-11.1
(12.2)

-14.3
(10.9)

0.419

Metal Products 0.364
(0.366)

0.433
(0.385)

0.588
(2.77)

-0.676
(1.04)

-0.012
(0.042)

-41.9
(27.7)

-43.3
(24.8)

0.547



Table A2 (Continued)

Dependent Variable Less
Than
HS

High
School

2-year
College

College Capital Land in
Use

Forest
or

Mount.

R2

General Machinery 0.993
(0.693)

0.856
(0.730)

0.615
(5.25)

-0.927
(1.97)

0.013
(0.080)

-159
(52.4)

-15.6
(47.0)

0.606

Electrical Machinery 0.870
(1.17)

1.87
(1.24)

-2.40
(8.90)

1.32
(3.34)

-0.133
(0.136)

-67.4
(89.0)

-28.8
(79.7)

0.368

Transport Machinery 2.77
(1.82)

-0.226
(1.92)

-.575
(13.8)

-2.76
(5.18)

0.240
(0.210)

-389
(138)

25.8
(124)

0.417

Precision Instrument -0.76
(0.323)

0.119
(0.340)

1.53
(2.45)

-0.592
(0.918)

-0.0002
(0.037)

-7.38
(24.5)

-0.388
(21.9)

0.171

Other Manufacturing 0.716
(0.323)

0.336
(0.340)

2.77
(2.45)

-0.886
(0.918)

-0.050
(0.037)

-49.4
(24.5)

-27.8
(21.9)

0.570

Transport & Com. -0.281
(0.33)

-1.12
(0.348)

1.61
(2.50)

0.789
(0.938)

0.230
(0.038)

-36.5
(25.0)

14.5
(22.4)

0.866

Electricity/Gas/
Water

0.442
(0.358)

-0.228
(0.378)

-5.93
(2.716)

1.68
(1.019)

0.128
(0.041)

-35.3
(27.1)

-4.70
(24.3)

0.472

Wholesale/Retail -1.20
(0.891)

-1.56
(0.938)

11.2
(6.75)

-4.74
(2.53)

0.533
(0.103)

-173
(67.5)

3.64
(65.8)

0.784

Finance/Ins./Real
Est.

-0.199
(0.538)

-1.32
(0.566)

7.90
(4.07)

0.165
(1.53)

0.237
(0.062)

-52.6
(40.7)

13.8
(36.5)

0.870

Other Services -0.730
(1.03)

-4.04
(1.09)

16.3
(7.82)

-1.86
(2.93)

0.637
(0.119)

-82.9
(78.2)

-1.17
(70.0)

0.817

Public Administration -0.003
(0.190)

-0.413
(0.200)

3.79
(1.44)

-0.663
(0.541)

0.010
(0.022)

40.1
(14.4)

1.30
(12.9)

0.872



Table A3: International Data 5-Factor Model
(Standard Errors in Parentheses, Constant Not Reported)

Dependent Variable Non-
College

College Capital Land Fuel R2

Processed Food -352
(262)

687
(1504)

0.046
(0.008)

-132
(121)

40.4
(19.1)

0.911

Textiles -65.7
(71.8)

219
(412)

0.009
(0.002)

-7.42
(33.2)

-2.46
(5.23)

0.876

Apparel -46.3
(31.7)

198
(182)

0.005
(0.001)

4.58
(14.6)

2.03
(2.31)

0.918

Lumber and Wood -110
(63.6)

614
(365)

0.005
(0.002)

9.88
(29.4)

-0.204
(4.63)

0.744

Furniture 11.3
(32.9)

277
(189)

0.003
(0.001)

-13.0
(15.22)

-0.970
(2.40)

0.763

Paper & Pulp -248
(154)

1460
(881)

0.009
(0.005)

-20.3
(70.9)

5.28
(11.2)

0.720

Publishing -68.5
(98.0)

512
(562)

0.010
(0.003)

-43.4
(45.3)

16.2
(7.13)

0.869

Chemicals 1.16
(132)

1894
(759)

0.025
(0.004)

-259
(61.1)

25.6
(9.62)

0.959

Petroleum & Coal -221
(311)

1989
(1783)

0.025
(0.010)

-86.2
(143)

143
(22.6)

0.853

Rubber -128
(80.7)

245
(463)

0.014
(0.002)

-25.1
(37.3)

-1.56
(5.88)

0.896

Leather & Footwear -5.87
(27.0)

-331
(155)

0.003
(0.0008)

11.9
(12.5)

-0.897
(1.96)

0.610

Ceramics & Glass -61.3
(62.0)

-233
(356)

0.013
(0.002)

-9.67
(28.6)

-3.15
(4.51)

0.895

Iron & Steel -12.30
(120)

-504
(691)

0.022
(0.004)

-61.5
(55.6)

-2.59
(8.76)

0.881

Non-Ferrous Metals -109
(37.9)

129
(217)

0.007
(0.001)

26.8
(17.5)

5.84
(2.76)

0.942

Metal Products -130
(124)

1977
(712)

0.015
(0.004)

-75.3
(57.3)

-0.001
(9.03)

0.915

General Machinery -79.5
(144)

2831
(829)

0.024
(0.004)

-241
(66.7)

7.72
(10.51)

0.954

Electrical Machinery -237
(224)

680
(1284)

0.033
(0.007)

-187
(103)

-3.81
(16.3)

0.873

Transport Machinery -271
(176)

3925
(1008)

0.033
(0.005)

-154
(81.1)

-10.6
(12.79)

0.959

Precision Instruments -29.6
(64.7)

908
(371)

0.005
(0.002)

-65.3
(29.9)

0.236
(4.71)

0.863


