327 research outputs found
Contour Maps of Demographic Surfaces
This paper presents a bouquet of contour maps to suggest the broad potential of their use in demographic studies. Every picture presented could serve as the basis for a thousand words or more of explanation and analysis, but here we merely serve up the maps as illustrations of the method. For an example of how such maps can be used in demographic analysis, see Caselli, Vaupel, and Yashin (1985): Mortality in Italy--Contours of a Century of Evolution (CP-85-24, International Institute for Applied Systems Analysis, Laxenburg, Austria)
Constraining the expansion history of the universe from the red shift evolution of cosmic shear
We present a quantitative analysis of the constraints on the total equation
of state parameter that can be obtained from measuring the red shift evolution
of the cosmic shear. We compare the constraints that can be obtained from
measurements of the spin two angular multipole moments of the cosmic shear to
those resulting from the two dimensional and three dimensional power spectra of
the cosmic shear. We find that if the multipole moments of the cosmic shear are
measured accurately enough for a few red shifts the constraints on the dark
energy equation of state parameter improve significantly compared to those that
can be obtained from other measurements.Comment: 17 pages, 4 figure
Distribution function approach to redshift space distortions
We develop a phase space distribution function approach to redshift space
distortions (RSD), in which the redshift space density can be written as a sum
over velocity moments of the distribution function. These moments are density
weighted and their lowest orders are density, momentum density, and stress
energy density. The series expansion is convergent on large scales. We perform
an expansion of these velocity moments into helicity modes, which are
eigenmodes under rotation around the axis of Fourier mode direction,
generalizing the scalar, vector, tensor decomposition of perturbations to an
arbitrary order. We show that only equal helicity moments correlate and derive
the angular dependence of the individual contributions to the redshift space
power spectrum in terms of angle mu between wave vector and line of sight. We
show that the dominant term of mu^2 dependence on large scales is the
cross-correlation between the density and scalar part of momentum density,
which can be related to the time derivative of the matter power spectrum.
Additional terms contributing and dominating on small scales are the vector
part of momentum density-momentum density correlations, the energy
density-density correlations, and the scalar part of anisotropic stress
density-density correlations. Similarly, we identify 7 terms contributing to
mu^4 dependence. Some of the advantages of the distribution function approach
are that the series expansion converges on large scales and remains valid in
multi-stream situations. We finish with a brief discussion of implications for
RSD in galaxies relative to dark matter, highlighting the issue of scale
dependent bias of velocity moments correlators.Comment: 12 page
Distribution function approach to redshift space distortions. Part IV: perturbation theory applied to dark matter
We develop a perturbative approach to redshift space distortions (RSD) using
the phase space distribution function approach and apply it to the dark matter
redshift space power spectrum and its moments. RSD can be written as a sum over
density weighted velocity moments correlators, with the lowest order being
density, momentum density and stress energy density. We use standard and
extended perturbation theory (PT) to determine their auto and cross
correlators, comparing them to N-body simulations. We show which of the terms
can be modeled well with the standard PT and which need additional terms that
include higher order corrections which cannot be modeled in PT. Most of these
additional terms are related to the small scale velocity dispersion effects,
the so called finger of god (FoG) effects, which affect some, but not all, of
the terms in this expansion, and which can be approximately modeled using a
simple physically motivated ansatz such as the halo model. We point out that
there are several velocity dispersions that enter into the detailed RSD
analysis with very different amplitudes, which can be approximately predicted
by the halo model. In contrast to previous models our approach systematically
includes all of the terms at a given order in PT and provides a physical
interpretation for the small scale dispersion values. We investigate RSD power
spectrum as a function of \mu, the cosine of the angle between the Fourier mode
and line of sight, focusing on the lowest order powers of \mu and multipole
moments which dominate the observable RSD power spectrum. Overall we find
considerable success in modeling many, but not all, of the terms in this
expansion.Comment: 37 pages, 13 figures, published in JCA
Strong Gravitational Lensing and Dark Energy Complementarity
In the search for the nature of dark energy most cosmological probes measure
simple functions of the expansion rate. While powerful, these all involve
roughly the same dependence on the dark energy equation of state parameters,
with anticorrelation between its present value w_0 and time variation w_a.
Quantities that have instead positive correlation and so a sensitivity
direction largely orthogonal to, e.g., distance probes offer the hope of
achieving tight constraints through complementarity. Such quantities are found
in strong gravitational lensing observations of image separations and time
delays. While degeneracy between cosmological parameters prevents full
complementarity, strong lensing measurements to 1% accuracy can improve
equation of state characterization by 15-50%. Next generation surveys should
provide data on roughly 10^5 lens systems, though systematic errors will remain
challenging.Comment: 7 pages, 5 figure
Mutual Events in the Cold Classical Transneptunian Binary System Sila and Nunam
Hubble Space Telescope observations between 2001 and 2010 resolved the binary
components of the Cold Classical transneptunian object (79360) Sila-Nunam
(provisionally designated 1997 CS29). From these observations we have
determined the circular, retrograde mutual orbit of Nunam relative to Sila with
a period of 12.50995 \pm 0.00036 days and a semimajor axis of 2777 \pm 19 km. A
multi-year season of mutual events, in which the two near-equal brightness
bodies alternate in passing in front of one another as seen from Earth, is in
progress right now, and on 2011 Feb. 1 UT, one such event was observed from two
different telescopes. The mutual event season offers a rich opportunity to
learn much more about this barely-resolvable binary system, potentially
including component sizes, colors, shapes, and albedo patterns. The low
eccentricity of the orbit and a photometric lightcurve that appears to coincide
with the orbital period are consistent with a system that is tidally locked and
synchronized, like the Pluto-Charon system. The orbital period and semimajor
axis imply a system mass of (10.84 \pm 0.22) \times 10^18 kg, which can be
combined with a size estimate based on Spitzer and Herschel thermal infrared
observations to infer an average bulk density of 0.72 +0.37 -0.23 g cm^-3,
comparable to the very low bulk densities estimated for small transneptunian
binaries of other dynamical classes.Comment: In press in Icaru
Learning through social spaces: migrant women and lifelong learning in post-colonial London
This article shows how migrant women engage in learning through social spaces. It argues that such spaces are little recognised, and that there are multiple ways in which migrant women construct and negotiate their informal learning through socialising with other women in different informal modes. Additionally, the article shows how learning is shaped by the socio-political, geographical and multicultural context of living in London, outlining ways in which gendered and racialised identities shape, construct and constrain participation in lifelong learning. The article shows that one way in which migrant women resist (post)colonial constructions of difference is by engaging in informal and non-formal lifelong learning, arguing that the benefits are (at least) two-fold. The women develop skills (including language skills) but also use their informal learning to develop what is referred to in this article as 'relational capital'. The article concludes that informal lifelong learning developed through social spaces can enhance a sense of belonging for migrant women
A CsI(Tl) Scintillating Crystal Detector for the Studies of Low Energy Neutrino Interactions
Scintillating crystal detector may offer some potential advantages in the
low-energy, low-background experiments. A 500 kg CsI(Tl) detector to be placed
near the core of Nuclear Power Station II in Taiwan is being constructed for
the studies of electron-neutrino scatterings and other keV-MeV range neutrino
interactions. The motivations of this detector approach, the physics to be
addressed, the basic experimental design, and the characteristic performance of
prototype modules are described. The expected background channels and their
experimental handles are discussed.Comment: 34 pages, 11 figures, submitted to Nucl. Instrum. Method
Structure and function of PspA and Vipp1 N-terminal peptides: Insights into the membrane stress sensing and mitigation
The phage shock protein (Psp) response maintains integrity of the inner membrane (IM) in response to extracytoplasmic stress conditions and is widely distributed amongst enterobacteria. Its central component PspA, a member of the IM30 peripheral membrane protein family, acts as a major effector of the system through its direct association with the IM. Under non-stress conditions PspA also negatively regulates its own expression via direct interaction with the AAA + ATPase PspF. PspA has a counterpart in cyanobacteria called Vipp1, which is implicated in protection of the thylakoid membranes. PspA's and Vipp1's conserved N-terminal regions contain a putative amphipathic helix a (AHa) required for membrane binding. An adjacent amphipathic helix b (AHb) in PspA is required for imposing negative control upon PspF. Here, purified peptides derived from the putative AH regions of PspA and Vipp1 were used to directly probe their effector and regulatory functions. We observed direct membrane-binding of AHa derived peptides and an accompanying change in secondary structure from unstructured to alpha-helical establishing them as bona fide membrane-sensing AH's. The peptide-binding specificities and their effects on membrane stability depend on membrane anionic lipid content and stored curvature elastic stress, in agreement with full length PspA and Vipp1 protein functionalities. AHb of PspA inhibited the ATPase activity of PspF demonstrating its direct regulatory role. These findings provide new insight into the membrane binding and function of PspA and Vipp1 and establish that synthetic peptides can be used to probe the structure-function of the IM30 protein family
- âŠ