77 research outputs found

    Multimode microwave circuit optomechanics as a platform to study coupled quantum harmonic oscillators

    Get PDF
    Harmonic oscillators might be one of the most fundamental entities described by physics. Yet they stay relevant in recent research. The topological properties associated with exceptional points that can occur when two modes interact have generated much interest in recent years. Harmonic oscillators are also at the heart of new quantum technological applications: the long lifetime of high-Q resonators make them advantageous as quantum memories, and they are employed for narrowband processing of quantum signals, as in Josephson parametric amplifiers. The goal of this thesis is to explore different fundamental regimes of two coupled harmonic oscillators using cavity optomechanics as the experimen- tal platform. With consistent progress in attaining ever increasing Q factors, mechanical and electromagnetic resonators realize near-ideal harmonic oscillators. By parametrically modulating the nonlinear optomechanical interaction between them, an effective linear coupling is achieved, which is tunable in strength and in the relative frequencies of the two modes. Thus cavity optomechanics provides a framework with excellent control over system parameters for the study of two coupled harmonic modes. The specific optomechanical implementation employed are superconducting circuits with the vibrating top plate of a capacitor as the mechanical element. Multimode optomechanical circuits are realized, with two microwave modes interacting with one or two mechanical oscillators. The supplementary modes serve either as intermediaries in the relation of the two modes of interest, or as auxiliaries used to control a parameter of the system. Three main experimental results are achieved. First, an auxiliary microwave mode allows the engineering of the effective dissipation rate of a mechanical oscillator. The latter then acts as a reservoir for the main microwave mode with which it interacts. The microwave mode susceptibility can be tuned, resulting in an instability akin to that of a maser and in resonant amplification of incoming microwave signals with an added noise close to the quantum minimum. Second, we study the conditions for a nonreciprocal interaction between two microwave modes, when the information flows in one direction but not in the other. The two modes interact through two mechanical oscillators, leading to frequency conversion between the two cavities. Dissipation in the mechanical modes is essential to the scheme in two ways: it provides a reciprocal phase necessary for the interference and eliminates the unwanted signals. Third, level attraction between a microwave and a mechanical mode is demonstrated, where the eigenfrequencies of the system are drawn closer as the result of interaction, rather distancing themselves as in the more usual case of level repulsion. The phenomenon is theoretically connected to exceptional points, and a general classification of the possible regimes of interaction between two harmonic modes is exposed, including level repulsion and attraction as special cases

    Quantum-Limited Directional Amplifiers with Optomechanics.

    Get PDF
    Directional amplifiers are an important resource in quantum-information processing, as they protect sensitive quantum systems from excess noise. Here, we propose an implementation of phase-preserving and phase-sensitive directional amplifiers for microwave signals in an electromechanical setup comprising two microwave cavities and two mechanical resonators. We show that both can reach their respective quantum limits on added noise. In the reverse direction, they emit thermal noise stemming from the mechanical resonators; we discuss how this noise can be suppressed, a crucial aspect for technological applications. The isolation bandwidth in both is of the order of the mechanical linewidth divided by the amplitude gain. We derive the bandwidth and gain-bandwidth product for both and find that the phase-sensitive amplifier has an unlimited gain-bandwidth product. Our study represents an important step toward flexible, on-chip integrated nonreciprocal amplifiers of microwave signals

    Pseudomonas Aeruginosa-Derived Rhamnolipids and Other Detergents Modulate Colony Morphotype and Motility in the Burkholderia Cepacia Complex

    Get PDF
    Competitive interactions mediated by released chemicals (e.g., toxins) are prominent in multispecies communities, but the effects of these chemicals at subinhibitory concentrations on susceptible bacteria are poorly understood. Although Pseudomonas aeruginosa and species of the Burkholderia cepacia complex (Bcc) can exist together as a coinfection in cystic fibrosis airways, P. aeruginosa toxins can kill Bcc species in vitro. Consequently, these bacteria become an ideal in vitro model system to study the impact of sublethal levels of toxins on the biology of typical susceptible bacteria, such as the Bcc, when exposed to P. aeruginosa toxins. Using P. aeruginosa spent medium as a source of toxins, we showed that a small window of subinhibitory concentrations modulated the colony morphotype and swarming motility of some but not all tested Bcc strains, for which rhamnolipids were identified as the active molecule. Using a random transposon mutagenesis approach, we identified several genes required by the Bcc to respond to low concentrations of rhamnolipids and consequently affect the ability of this microbe to change its morphotype and swarm over surfaces. Among those genes identified were those coding for type IVb-Tad pili, which are often required for virulence in various bacterial pathogens. Our study demonstrates that manipulating chemical gradients in vitro can lead to the identification of bacterial behaviors relevant to polymicrobial infections

    Cryogenic electro-optic interconnect for superconducting devices

    Full text link
    Encoding information onto optical fields is the backbone of modern telecommunication networks. Optical fibers offer low loss transport and vast bandwidth compared to electrical cables, and are currently also replacing coaxial cables for short-range communications. Optical fibers also exhibit significantly lower thermal conductivity, making optical interconnects attractive for interfacing with superconducting circuits and devices. Yet little is known about modulation at cryogenic temperatures. Here we demonstrate a proof-of-principle experiment, showing that currently employed Ti-doped LiNbO modulators maintain the Pockels coefficient at 3K---a base temperature for classical microwave amplifier circuitry. We realize electro-optical read-out of a superconducting electromechanical circuit to perform both coherent spectroscopy, measuring optomechanically-induced transparency, and incoherent thermometry, encoding the thermomechanical sidebands in an optical signal. Although the achieved noise figures are high, approaches that match the lower-bandwidth microwave signals, use integrated devices or materials with higher EO coefficient, should achieve added noise similar to current HEMT amplifiers, providing a route to parallel readout for emerging quantum or classical computing platforms.Comment: Experimental details added. The heating experiment update

    Large-scale associations between the leukocyte transcriptome and BOLD responses to speech differ in autism early language outcome subtypes.

    Get PDF
    Heterogeneity in early language development in autism spectrum disorder (ASD) is clinically important and may reflect neurobiologically distinct subtypes. Here, we identified a large-scale association between multiple coordinated blood leukocyte gene coexpression modules and the multivariate functional neuroimaging (fMRI) response to speech. Gene coexpression modules associated with the multivariate fMRI response to speech were different for all pairwise comparisons between typically developing toddlers and toddlers with ASD and poor versus good early language outcome. Associated coexpression modules were enriched in genes that are broadly expressed in the brain and many other tissues. These coexpression modules were also enriched in ASD-associated, prenatal, human-specific, and language-relevant genes. This work highlights distinctive neurobiology in ASD subtypes with different early language outcomes that is present well before such outcomes are known. Associations between neuroimaging measures and gene expression levels in blood leukocytes may offer a unique in vivo window into identifying brain-relevant molecular mechanisms in ASD

    Age-dependent impact of two exercise training regimens on genomic and metabolic remodeling in skeletal muscle and liver of male mice

    Get PDF
    Skeletal muscle adapts to different exercise training modalities with age; however, the impact of both variables at the systemic and tissue levels is not fully understood. Here, adult and old C57BL/6 male mice were assigned to one of three groups: sedentary, daily high-intensity intermittent training (HIIT), or moderate intensity continuous training (MICT) for 4 weeks, compatible with the older group’s exercise capacity. Improvements in body composition, fasting blood glucose, and muscle strength were mostly observed in the MICT old group, while effects of HIIT training in adult and old animals was less clear. Skeletal muscle exhibited structural and functional adaptations to exercise training, as revealed by electron microscopy, OXPHOS assays, respirometry, and muscle protein biomarkers. Transcriptomics analysis of gastrocnemius muscle combined with liver and serum metabolomics unveiled an age-dependent metabolic remodeling in response to exercise training. These results support a tailored exercise prescription approach aimed at improving health and ameliorating age-associated loss of muscle strength and function in the elderly.This work was supported by funding from the Intramural Research Program of the National Institute on Aging/NIH. Work in JMV laboratory was supported by the Spanish Ministerio de Economía y Competitividad (MINECO) grant BFU2015-64630-R, Ministerio de Ciencia, Innovación y Universidades (MICIU) grant RTI2018-100695-B-I00, Spanish Junta de Andalucía grants P18-RT-4264, 1263735-R and BIO-276, the FEDER Funding Program from the European Union, and Universidad de Córdoba. MCR was supported by a FPU fellowship from the Spanish Ministerio de Educación, Cultura y Deporte (reference FPU14/06308). SRL held a FPI predoctoral contract funded by MINECO (reference BES-2016-078229).Peer reviewe

    GA4GH: International policies and standards for data sharing across genomic research and healthcare.

    Get PDF
    The Global Alliance for Genomics and Health (GA4GH) aims to accelerate biomedical advances by enabling the responsible sharing of clinical and genomic data through both harmonized data aggregation and federated approaches. The decreasing cost of genomic sequencing (along with other genome-wide molecular assays) and increasing evidence of its clinical utility will soon drive the generation of sequence data from tens of millions of humans, with increasing levels of diversity. In this perspective, we present the GA4GH strategies for addressing the major challenges of this data revolution. We describe the GA4GH organization, which is fueled by the development efforts of eight Work Streams and informed by the needs of 24 Driver Projects and other key stakeholders. We present the GA4GH suite of secure, interoperable technical standards and policy frameworks and review the current status of standards, their relevance to key domains of research and clinical care, and future plans of GA4GH. Broad international participation in building, adopting, and deploying GA4GH standards and frameworks will catalyze an unprecedented effort in data sharing that will be critical to advancing genomic medicine and ensuring that all populations can access its benefits

    Unstable Avoided Crossing in Coupled Spinor Condensates

    No full text
    We consider the dynamics of a Bose-Einstein condensate with two internal states, coupled through a coherent drive. We focus on a specific quench protocol, in which the sign of the coupling field is suddenly changed. At a mean-field level, the system is transferred from a minimum to a maximum of the coupling energy and can remain dynamically stable, in spite of the development of negative-frequency modes. In the presence of a nonzero detuning between the two states, the “charge” and “spin” modes couple, giving rise to an unstable avoided crossing. This phenomenon is generic to systems with two dispersing modes away from equilibrium and constitutes an example of class-Io nonequilibrium pattern formation in quantum systems.Physic

    Nonreciprocity in Microwave Optomechanical Circuits

    No full text
    Nonreciprocal devices such as isolators and circulators are necessary to protect sensitive apparatus from unwanted noise. Recently, a variety of alternatives were proposed to replace ferrite-based commercial technologies, with the motivation to be integrated with microwave superconducting quantum circuits. Here, we review isolators realized with microwave optomechanical circuits and present a gyrator-based picture to develop an intuition on the origin of nonreciprocity in these systems. Such nonreciprocal optomechanical schemes show promise as they can be extended to circulators and directional amplifiers, with perspectives to reach the quantum limit in terms of noise
    corecore