5,105 research outputs found

    Circular RNAs in Clear Cell Renal Cell Carcinoma: Their Microarray-Based Identification, Analytical Validation, and Potential Use in a Clinico-Genomic Model to Improve Prognostic Accuracy

    Get PDF
    Circular RNAs (circRNAs) may act as novel cancer biomarkers. However, a genome-wide evaluation of circRNAs in clear cell renal cell carcinoma (ccRCC) has yet to be conducted. Therefore, the objective of this study was to identify and validate circRNAs in ccRCC tissue with a focus to evaluate their potential as prognostic biomarkers. A genome-wide identification of circRNAs in total RNA extracted from ccRCC tissue samples was performed using microarray analysis. Three relevant differentially expressed circRNAs were selected (circEGLN3, circNOX4, and circRHOBTB3), their circular nature was experimentally confirmed, and their expression-along with that of their linear counterparts-was measured in 99 malignant and 85 adjacent normal tissue samples using specifically established RT-qPCR assays. The capacity of circRNAs to discriminate between malignant and adjacent normal tissue samples and their prognostic potential (with the endpoints cancer-specific, recurrence-free, and overall survival) after surgery were estimated by C-statistics, Kaplan-Meier method, univariate and multivariate Cox regression analysis, decision curve analysis, and Akaike and Bayesian information criteria. CircEGLN3 discriminated malignant from normal tissue with 97% accuracy. We generated a prognostic for the three endpoints by multivariate Cox regression analysis that included circEGLN3, circRHOBT3 and linRHOBTB3. The predictive outcome accuracy of the clinical models based on clinicopathological factors was improved in combination with this circRNA-based signature. Bootstrapping as well as Akaike and Bayesian information criteria confirmed the statistical significance and robustness of the combined models. Limitations of this study include its retrospective nature and the lack of external validation. The study demonstrated the promising potential of circRNAs as diagnostic and particularly prognostic biomarkers in ccRCC patients

    Macrophage-derived Lipocalin-2 contributes to ischemic resistance mechanisms by protecting from renal injury

    Get PDF
    Renal ischemia-reperfusion injury triggers an inflammatory response associated to infiltrating macrophages which determines the further outcome of disease. Brown Norway rats are known to show endogenous resistance to ischemia-induced renal damage. By contrast, Sprague Dawley rats exhibit a higher susceptibility to ischemic injury. In order to ascertain cytoprotective mechanisms, we focused on the implication of lipocalin-2 protein in main resistance mechanisms in renal ischemia/reperfusion injury by using adoptive macrophage administration, genetically modified ex vivo either to overexpress or to knockdown lipocalin-2. In vitro experiments with bone marrow-derived macrophages both from Brown Norway rats and from Sprague Dawley rats under hypoxic conditions showed endogenous differences regarding cytokine and lipocalin-2 expression profile in the two strains. Most interestingly, we observed that macrophages of the resistant strain express significantly more lipocalin-2. In vivo studies showed that tubular epithelial cell apoptosis and renal injury significantly increased and reparative markers decreased in Brown Norway rats after injection of lipocalin-2-knockdown macrophages, while the administration of lipocalin-2-overexpressing cells significantly decreased Sprague Dawley susceptibility. These data point to a crucial role of macrophage-derived lipocalin-2 in endogenous cytoprotective mechanisms. We conclude that expression of lipocalin-2 in tissue-infiltrating macrophages is pivotal for kidney-intrinsic cytoprotective pathways during ischemia reperfusion injury.The authors would like to thank M Ángeles Muñoz for her excellent technical support. This work was supported by grants from FIS PI12/00720 from Instituto de Salud Carlos III cofunded by FEDER funds/European Regional Development Fund (ERDF)-a way to buid Europe- and SENEFRO (awarded to AS) and SAF 2012-39947-02 (awarded to GH). MJ was supported by a grant from Fritz Thyssen Stiftung (Az.10.12.2.156) and a grant from University of Frankfurt (Focus Line B) and AS is supported by Miguel Servet II contracting system (CPII 14/00026).Peer Reviewe

    Dynamische Konzeptualisierung

    Get PDF
    Jung B, Wachsmuth I. Dynamische Konzeptualisierung. Report - Situierte KĂŒnstliche Kommunikatoren. Vol 94-09. Bielefeld: UniversitĂ€t Bielefeld, SFB 360; 1994

    Macrophage-derived Lipocalin-2 contributes to ischemic resistance mechanisms by protecting from renal injury

    Get PDF
    Renal ischemia-reperfusion injury triggers an inflammatory response associated to infiltrating macrophages which determines the further outcome of disease. Brown Norway rats are known to show endogenous resistance to ischemia-induced renal damage. By contrast, Sprague Dawley rats exhibit a higher susceptibility to ischemic injury. In order to ascertain cytoprotective mechanisms, we focused on the implication of lipocalin-2 protein in main resistance mechanisms in renal ischemia/reperfusion injury by using adoptive macrophage administration, genetically modified ex vivo either to overexpress or to knockdown lipocalin-2. In vitro experiments with bone marrow-derived macrophages both from Brown Norway rats and from Sprague Dawley rats under hypoxic conditions showed endogenous differences regarding cytokine and lipocalin-2 expression profile in the two strains. Most interestingly, we observed that macrophages of the resistant strain express significantly more lipocalin-2. In vivo studies showed that tubular epithelial cell apoptosis and renal injury significantly increased and reparative markers decreased in Brown Norway rats after injection of lipocalin-2-knockdown macrophages, while the administration of lipocalin-2-overexpressing cells significantly decreased Sprague Dawley susceptibility. These data point to a crucial role of macrophage-derived lipocalin-2 in endogenous cytoprotective mechanisms. We conclude that expression of lipocalin-2 in tissue-infiltrating macrophages is pivotal for kidney-intrinsic cytoprotective pathways during ischemia reperfusion injury

    Toll-like receptor 4 in experimental kidney transplantation: early mediator of endogenous danger signals

    Get PDF
    The role of toll-like receptors (TLRs) has been described in the pathogenesis of renal ischemia/reperfusion injury, but data on the expression and function of TLR4 during renal allograft damage are still scarce. We analyzed the expression of TLR4 in an experimental rat model 6 and 28 days after allogeneic kidney transplantation in comparison to control rats and rats after syngeneic transplantation. On day 6, a significant induction in TLR4 expression - restricted to the glomerular compartment - was found in acute rejecting allografts only. TLR4 expression strongly correlated with renal function, and TLR4 induction was accompanied by a significant increase in CC chemokine expression within the graft as well as in urinary CC chemokine excretion. TLR4 induction may be caused by an influx of macrophages as well as TLR4-expressing intrinsic renal cells. Fibrinogen deposition in renal allografts correlated with renal TLR4 expression and may act as a potent stimulator of chemokine release via TLR4 activation. This study provides, for the first time, data about the precise intrarenal localization and TLR4 induction after experimental kidney transplantation. It supports the hypothesis that local TLR4 activation by endogenous ligands may be one pathological link from unspecific primary allograft damage to subsequent chemokine release, infiltration and activation of immune cells leading to deterioration of renal function and induction of renal fibrosis. Copyright (c) 2012 S. Karger AG, Base

    Instability of circular RNAs in clinical tissue samples impairs their reliable expression analysis using RT-qPCR: from the myth of their advantage as biomarkers to reality

    Get PDF
    Background: Circular RNAs (circRNAs) are a new class of RNAs with medical significance. Compared to that of linear mRNA transcripts, the stability of circRNAs against degradation owing to their circular structure is considered advantageous for their use as biomarkers. As systematic studies on the stability of circRNAs depending on the RNA integrity, determined as RNA integrity number (RIN), in clinical tissue samples are lacking, we have investigated this aspect in the present study under model and clinical conditions. Methods: Total RNA isolated from kidney cancer tissue and cell lines (A-498 and HEK-293) with different RIN after thermal degradation was used in model experiments. Further, RNA isolated from kidney cancer and prostate cancer tissue collected under routine surgical conditions, representing clinical samples with RIN ranging from 2 to 9, were examined. Quantitative real-time reverse-transcription polymerase chain reaction (RT-qPCR) analysis of several circRNAs (circEGLN3, circRHOBTB3, circCSNK1G3, circRNA4, and circRNA9), their corresponding linear counterparts, tissue-specific reference genes, and three microRNAs (as controls) was performed. The quantification cycles were converted into relative quantities and normalized to the expression of specific reference genes for the corresponding tissue. The effect of RIN on the expression of different RNA entities was determined using linear regression analysis, and clinical samples were classified into two groups based on RIN greater or lesser than 6. Results: The results of model experiments and clinical sample analyses showed that all relative circRNA expression gradually decreased with reduction in RIN values. The adverse effect of RIN was partially compensated after normalizing the data and limiting the samples to only those with RIN values > 6. Conclusions: Our results suggested that circRNAs are not stable in clinical tissue samples, but are subjected to degradative processes similar to mRNAs. This has not been investigated extensively in circRNA expression studies, and hence must be considered in future for obtaining reliable circRNA expression data. This can be achieved by applying the principles commonly used in mRNA expression studies

    Piwi-interacting RNAs as novel prognostic markers in clear cell renal cell carcinomas

    Get PDF
    Background Piwi-interacting RNAs (piRNAs) are small RNAs of 27–30 nucleotides mapping to transposons or clustering in repeat genomic regions. Preliminary studies suggest an important role in cancerogenesis. This study is the first one investigating their prognostic impact in clear cell renal cell cancer (ccRCC) patients. Methods Three piRNAs (piR-30924, piR-57125, and piR-38756) selected on the basis of initial piRNA microarray analyses were determined using RT-qPCR in non-metastatic (n = 76) and metastatic (n = 30) ccRCC tissue at the time of nephrectomy in comparison to normal renal tissue (n = 77) and tissue from distant ccRCC metastases (n = 13). Primary clinical end points were recurrence-free and overall survival. Results piR-57125 showed lower expression in metastatic than in non-metastatic tumors, whereas the expression of piR-30924 and piR-38756 increased in metastatic tumors. The higher expression of piR-30924 and piR-38756 as well as the lower expression of piR-57125 in metastatic primary tumors were significantly associated with tumor recurrence and overall survival. Multivariate Cox regression analyses revealed both piR-30924 and piR-57125 as independent prognostic predictors. This impact was even more pronounced in non-metastatic patients. Conclusions This study demonstrates that the expression levels of these piRNAs in primary non-metastatic and metastatic ccRCC tissue can serve as potential prognostic biomarkers in combination with clinicopathological factors

    miR-9-5p in Nephrectomy Specimens is a Potential Predictor of Primary Resistance to First-Line Treatment with Tyrosine Kinase Inhibitors in Patients with Metastatic Renal Cell Carcinoma

    Get PDF
    Approximately 20-30% of patients with metastatic renal cell carcinoma (mRCC) in first-line treatment with tyrosine kinase inhibitors (TKIs) do not respond due to primary resistance to this drug. At present, suitable robust biomarkers for prediction of a response are not available. Therefore, the aim of this study was to evaluate a panel of microRNAs (miRNAs) in nephrectomy specimens for use as predictive biomarkers for TKI resistance. Archived formalin-fixed, paraffin embedded nephrectomy samples from 60 mRCC patients treated with first-line TKIs (sunitinib, n = 51; pazopanib, n = 6; sorafenib, n = 3) were categorized into responders and non-responders. Using the standard Response Evaluation Criteria in Solid Tumors, patients with progressive disease within 3 months after the start of treatment with TKI were considered as non-responders and those patients with stable disease and complete or partial response under the TKI treatment for at least 6 months as responders. Based on a miRNA microarray expression profile in the two stratified groups of patients, seven differentially expressed miRNAs were validated using droplet digital reverse-transcription quantitative real-time polymerase chain reaction (RT-qPCR) assays in the two groups. Receiver operating characteristic curve analysis and binary logistic regression of response prediction were performed. MiR-9-5p and miR-489-3p were able to discriminate between the two groups. MiR-9-5p, as the most significant miRNA, improved the correct prediction of primary resistance against TKIs in comparison to that of conventional clinicopathological variables. The results of the decision curve analyses, Kaplan-Meier analyses and Cox regression analyses confirmed the potential of miR-9-5p in the prediction of response to TKIs and the prediction of progression-free survival after the initiation of TKI treatment
    • 

    corecore