4,659 research outputs found

    Parallel algorithms and concentration bounds for the Lovasz Local Lemma via witness DAGs

    Full text link
    The Lov\'{a}sz Local Lemma (LLL) is a cornerstone principle in the probabilistic method of combinatorics, and a seminal algorithm of Moser & Tardos (2010) provides an efficient randomized algorithm to implement it. This can be parallelized to give an algorithm that uses polynomially many processors and runs in O(log3n)O(\log^3 n) time on an EREW PRAM, stemming from O(logn)O(\log n) adaptive computations of a maximal independent set (MIS). Chung et al. (2014) developed faster local and parallel algorithms, potentially running in time O(log2n)O(\log^2 n), but these algorithms require more stringent conditions than the LLL. We give a new parallel algorithm that works under essentially the same conditions as the original algorithm of Moser & Tardos but uses only a single MIS computation, thus running in O(log2n)O(\log^2 n) time on an EREW PRAM. This can be derandomized to give an NC algorithm running in time O(log2n)O(\log^2 n) as well, speeding up a previous NC LLL algorithm of Chandrasekaran et al. (2013). We also provide improved and tighter bounds on the run-times of the sequential and parallel resampling-based algorithms originally developed by Moser & Tardos. These apply to any problem instance in which the tighter Shearer LLL criterion is satisfied

    Exterior power operations on higher K-groups via binary complexes

    No full text
    We use Grayson's binary multicomplex presentation of algebraic K-theory to give a new construction of exterior power operations on the higher K-groups of a (quasi-compact) scheme. We show that these operations satisfy the axioms of a lambda-ring, including the product and composition laws. To prove the composition law we show that the Grothendieck group of the exact category of integral polynomial functors is the universal lambda-ring on one generator

    In Vivo Time-Lapse Imaging of Cell Divisions during Neurogenesis in the Developing Zebrafish Retina

    Get PDF
    AbstractTwo-photon excitation microscopy was used to reconstruct cell divisions in living zebrafish embryonic retinas. Contrary to proposed models for vertebrate asymmetric divisions, no apico-basal cell divisions take place in the zebrafish retina during the generation of postmitotic neurons. However, a surprising shift in the orientation of cell division from central-peripheral to circumferential occurs within the plane of the ventricular surface. In the sonic you (syu) and lakritz (lak) mutants, the shift from central-peripheral to circumferential divisions is absent or delayed, correlating with the delay in neuronal differentiation and neurogenesis in these mutants. The reconstructions here show that mitotic cells always remain in contact with the opposite basal surface by means of a thin basal process that can be inherited asymmetrically

    Светоизлучающие диоды белого света: состояние и основные тенденции развития

    Get PDF
    Проведен обзор состояния и тенденций развития технологии изготовления светоизлучающих диодов белого света. Систематизированы параметры сверхъярких белых светодиодов, светодиодных модулей и источников света

    Molecular organization of selected prokaryotic S-Iayer proteins

    Full text link
    Regular crystalline surface layers (S-layers) are widespread among prokaryotes and probably represent the earliest cell wall structures. S-layer genes have been found in approximately 400 different species of the prokaryotic domains bacteria and archaea. S-layers usually consist of a single (glyco-rprotein species with molecular masses ranging from about 40 to 200 kDa that form lattices of oblique, tetragonal, or hexagonal architecture. The primary sequences of hyperthermophilic archaeal species exhibit some characteristic signatures, Further adaptations to their specific environments occur by various post-translational modifications, such as linkage of glycans, lipids, phosphate, and sulfate groups to the protein or by proteolytic processing. Specific domains direct the anchoring of the S-layer to the underlying cell wall components and transport across the cytoplasma memhrane. In addition to their presumptive original role as protective coats in archaea and bacteria, they have adapted new functions, e.g., as molecular sieves, attachment sites for extracellular enzymes, and virulence factors.Peer reviewe

    Global Rebalancing of Cellular Resources by Pleiotropic Point Mutations Illustrates a Multi-scale Mechanism of Adaptive Evolution

    Get PDF
    Pleiotropic regulatory mutations affect diverse cellular processes, posing a challenge to our understanding of genotype-phenotype relationships across multiple biological scales. Adaptive Laboratory Evolution (ALE) allows for such mutations to be found and characterized in the context of clear selection pressures. Here, several ALE-selected single-mutation variants in Escherichia coli's RNA polymerase (RNAP) are detailed using an integrated multi-scale experimental and computational approach. While these mutations increase cellular growth rates in steady environments, they reduce tolerance to stress and environmental fluctuations. We detail structural changes in the RNAP that rewire the transcriptional machinery to rebalance proteome and energy allocation towards growth and away from several hedging and stress functions. We find that while these mutations occur in diverse locations in the RNAP, they share a common adaptive mechanism. In turn, these findings highlight the resource allocation tradeoffs organisms face and suggest how the structure of the regulatory network enhances evolvability

    Diversity of Artists in Major U.S. Museums

    Full text link
    The U.S. art museum sector is grappling with diversity. While previous work has investigated the demographic diversity of museum staffs and visitors, the diversity of artists in their collections has remained unreported. We conduct the first large-scale study of artist diversity in museums. By scraping the public online catalogs of 18 major U.S. museums, deploying a sample of 10,000 artist records comprising over 9,000 unique artists to crowdsourcing, and analyzing 45,000 responses, we infer artist genders, ethnicities, geographic origins, and birth decades. Our results are threefold. First, we provide estimates of gender and ethnic diversity at each museum, and overall, we find that 85% of artists are white and 87% are men. Second, we identify museums that are outliers, having significantly higher or lower representation of certain demographic groups than the rest of the pool. Third, we find that the relationship between museum collection mission and artist diversity is weak, suggesting that a museum wishing to increase diversity might do so without changing its emphases on specific time periods and regions. Our methodology can be used to broadly and efficiently assess diversity in other fields.Comment: 15 pages, 2 figures, minor revisions of and enhancements to tex

    Effect of a Normal-State Pseudogap on Optical Conductivity in Underdoped Cuprate Superconductors

    Full text link
    We calculate the c-axis infrared conductivity σc(ω)\sigma_c(\omega) in underdoped cuprate superconductors for spinfluctuation exchange scattering within the CuO2_2-planes including a phenomenological d-wave pseudogap of amplitude EgE_g. For temperatures decreasing below a temperature TEg/2T^* \sim E_g/2, a gap for ω<2Eg\omega < 2E_g develops in σc(ω)\sigma_c(\omega) in the incoherent (diffuse) transmission limit. The resistivity shows 'semiconducting' behavior, i.e. it increases for low temperatures above the constant behavior for Eg=0E_g=0. We find that the pseudogap structure in the in-plane optical conductivity is about twice as big as in the interplane conductivity σc(ω)\sigma_c(\omega), in qualitative agreement with experiment. This is a consequence of the fact that the spinfluctuation exchange interaction is suppressed at low frequencies as a result of the opening of the pseudogap. While the c-axis conductivity in the underdoped regime is described best by incoherent transmission, in the overdoped regime coherent conductance gives a better description.Comment: to be published in Phys. Rev. B (November 1, 1999

    Plasticity in the foraging behavior of male Southern Rockhopper Penguins (Eudyptes chrysocome) during incubation in the Falkland/Malvinas Islands

    Get PDF
    Environmental changes often affect the persistence of species or populations at different spatial and temporal scales. Thus, species must either adapt to these changes or experience negative impacts at the individual or population levels. Southern Rockhopper Penguins Eudyptes chrysocome are distributed throughout the Southern Ocean and have experienced substantial declines in the past which were linked to various anthropogenic and environmental factors. The aim of this study was to investigate the foraging behavior of male Southern Rockhopper Penguins at Berkeley Sound, East Falkland, Falkland/Malvinas Islands, during incubation, a period at-sea which is crucial for replenishing body condition between two extended fasting periods ashore. Thus, birds are forced to forage efficiently during that time to balance their energy demands. We linked their at-sea distribution and foraging behavior to satellite-derived sea surface temperatures and temperature-depth profiles which were recorded by devices attached to the birds. While Southern Rockhopper Penguins usually travel several hundreds of km out into the open sea on multiple-day trips during incubation, we found in our study that most birds foraged close inshore, less than 9 km away from their colony, and regularly returned to their breeding site. We propose that this behavior occurred in response to the close proximity of the 8 °C SST isotherm and the vertical stratification of the waters therein. Also, while usually feeding pelagically in open waters, there are strong indications that Southern Rockhopper Penguins performed benthic or, at least, near-bottom dives to catch their prey during these short trips. The consequences of this behavioral plasticity in response to variations in sea temperatures and inferred prey availability are discussed, especially with regard to predicted global climate change
    corecore