147 research outputs found

    Lack of IL‐6 augments inflammatory response but decreases vascular permeability in bacterial meningitis

    Get PDF
    Interleukin (IL)‐6 is a multifunctional cytokine with diverse actions and has been implicated in the pathophysiology of many neurological and inflammatory disorders. In this study, we investigated the role of IL‐6 in pneumococcal meningitis. Cerebral infection in wild‐type (WT) mice caused an increase in vascular permeability and intracranial pressure (ICP), which were significantly reduced in IL‐6-/- mice. In contrast, meningitis in IL‐6-/- mice was associated with a significant increase in CSF white blood cell count compared with infected WT mice, indicating an enhanced inflammatory response. Analysis of mRNA expression in the brain showed an increase in tumour necrosis factor (TNF)‐α, IL‐1β, and macrophage inflammatory protein 2 (MIP‐2) levels, but decreased expression of granulocyte-macrophage colony‐stimulating factor in infected IL‐6-/- mice compared with infected WT controls. Similar results were obtained when rats challenged with pneumococci were systemically treated with neutralizing anti‐IL‐6 antibodies, resulting in an increased pleocytosis but at the same time a reduction of vascular permeability, brain oedema formation, and ICP, which was not accompanied by a downregulation of matrix metalloproteinases. Our data indicate that IL‐6 plays an important anti‐inflammatory role in bacterial meningitis by reducing leukocyte infiltration but contributes to the rise in intracranial pressure by increasing blood-brain barrier (BBB) permeability. These findings suggest that the migration of leukocytes across the BBB and the increase in vascular permeability are two independent processes during bacterial meningiti

    Alteration of T cell cytokine production in PLPp-139-151-induced EAE in SJL mice by an immunostimulatory CpG Oligonucleotide

    Get PDF
    Experimental autoimmune encephalomyelitis (EAE) is - in certain aspects - regarded as an animal model of the human CNS autoimmune disease multiple sclerosis (MS). While in EAE CNS-autoantigen-specific immunity is induced in a defined way, the initial processes leading to CNS autoimmunity in humans are so far unknown. Despite essential restrictions, which exist regarding the interpretation of EAE data towards MS, EAE might be a useful model to study certain basic aspects of CNS autoimmunity. Studies in MS have demonstrated that established autoimmune pathology can be critically influenced by environmental factors, in particular viral and bacterial infections. To investigate this interaction, EAE as an instrument to study CNS autoimmunity under defined conditions appears to be a suitable experimental tool. For this reason, we here investigated the influence of the Toll-like-receptor (TLR) ligand CpG oligonucleotide (CpG) on already established CNS autoimmunity in murine proteolipid protein (PLP)-induced EAE in SJL mice. CpG were found to co-stimulate PLPp-specific IFN-γ production in the peripheral immune system and in the CNS. However, CpG induced Interleukin (IL)-17 production in the inflamed CNS both alone and in combination with additional PLPp stimulation. These findings might indicate a mechanism by which systemic infections and the microbial stimuli associated with them may influence already existing CNS autoimmune pathology

    Predicting the Response to Intravenous Immunoglobulins in an Animal Model of Chronic Neuritis

    Get PDF
    Chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) is a disabling autoimmune disorder of the peripheral nervous system (PNS). Intravenous immunoglobulins (IVIg) are effective in CIDP, but the treatment response varies greatly between individual patients. Understanding this interindividual variability and predicting the response to IVIg constitute major clinical challenges in CIDP. We previously established intercellular adhesion molecule (ICAM)-1 deficient non-obese diabetic (NOD) mice as a novel animal model of CIDP. Here, we demonstrate that similar to human CIDP patients, ICAM-1 deficient NOD mice respond to IVIg treatment by clinical and histological measures. Nerve magnetic resonance imaging and histology demonstrated that IVIg ameliorates abnormalities preferentially in distal parts of the sciatic nerve branches. The IVIg treatment response also featured great heterogeneity allowing us to identify IVIg responders and non- responders. An increased production of interleukin (IL)-17 positively predicted IVIg treatment responses. In human sural nerve biopsy sections, high numbers of IL-17 producing cells were associated with younger age and shorter disease duration. Thus, our novel animal model can be utilized to identify prognostic markers of treatment responses in chronic inflammatory neuropathies and we identify IL-17 production as one potential such prognostic marker

    Serum Neurofilament Light Trajectories and Their Relation to Subclinical Radiological Disease Activity in Relapsing Multiple Sclerosis Patients in the APLIOS Trial

    Get PDF
    Introduction: Several studies have described prognostic value of serum neurofilament light chain (sNfL) at the group level in relapsing multiple sclerosis (RMS) patients. Here, we aimed to explore the temporal association between sNfL and development of subclinical disease activity as assessed by magnetic resonance imaging (MRI) at the group level and evaluate the potential of sNfL as a biomarker for capturing subclinical disease activity in individual RMS patients. Methods: In the 12-week APLIOS study, patients (N = 284) received subcutaneous ofatumumab 20 mg. Frequent sNfL sampling (14 time points over 12 weeks) and monthly MRI scans enabled key analyses including assessment of the group-level temporal relationship of sNfL levels with on-study subclinical development of gadolinium-enhancing (Gd +)T1 lesions. Prognostic value of baseline sNfL ("high" vs. "low") level for subsequent on-study clinical relapse or Gd + T1 activity was assessed. Individual patient-level development of on-study Gd + T1 lesions wascompared across three predictors: baseline Gd + T1 lesion number, baseline sNfL ("high" vs. "low"), and time-matched sNfL. Results: In patients developing Gd + T1 lesions at week 4 (absent at baseline), sNfL levels increased during the month preceding the week-4 MRI scan and then gradually decreased back to baseline. High versus low baseline sNfL conferred increased risk of subsequent on-study clinical relapse or Gd + T1 activity (HR, 2.81; p < 0.0001) in the overall population and, notably, also in the patients without baseline Gd + T1 lesions (HR, 2.48; p = 0.0213). Individual patient trajectories revealed a marked difference in Gd + T1 lesions between patients with the ten highest vs. lowest baseline sNfL levels (119 vs. 19 lesions). Prognostic value of baseline or time-matched sNfL for on-study Gd + T1 lesions was comparable to that of the number of baseline MRI Gd + T1 lesions. Conclusions: sNfL measurement may have utility in capturing and monitoring subclinical disease activity in RMS patients. sNfL assessments could complement regular MRI scans and may provide an alternative when MRI assessment is not feasible. ClinicalTrials.gov: NCT03560739. Classification of Evidence: This study provides class I evidence that serum neurofilament light may be used as a biomarker for monitoring subclinical disease activity in relapsing multiple sclerosis patients, as shown by its elevation in the weeks preceding the development of new gadolinium-enhancing T1 lesion activity

    3D-визуализация в ультразвуковой дефектоскопии

    Get PDF
    На сегодняшний день существует множество средств визуализации ультразвуковых данных, но все они, как правило, интегрированы в дефектоскопы. Когда у нас возникает потребность извлечь данные сканирования, произвести собственную обработку, и представить в трехмерном изображении, то мы оказываемся лишенными возможности визуализации. Предложенное программное обеспечение на основе алгоритма SAFT позволяет произвести постобработку данных сканирования (А-сканов) и двумерную и трехмерную визуализацию
    corecore