81 research outputs found

    p53 induces distinct epigenetic states at its direct target promoters

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The tumor suppressor protein p53 is a transcription factor that is mutated in many cancers. Regulation of gene expression by binding of wild-type p53 to its target sites is accompanied by changes in epigenetic marks like histone acetylation. We studied DNA binding and epigenetic changes induced by wild-type and mutant p53 in non-malignant hTERT-immortalized human mammary epithelial cells overexpressing either wild-type p53 or one of four p53 mutants (R175H, R249S, R273H and R280K) on a wild-type p53 background.</p> <p>Results</p> <p>Using chromatin immunoprecipitation coupled to a 13,000 human promoter microarray, we found that wild-type p53 bound 197 promoters on the microarray including known and novel p53 targets. Of these p53 targets only 20% showed a concomitant increase in histone acetylation, which was linked to increased gene expression, while 80% of targets showed no changes in histone acetylation. We did not observe any decreases in histone acetylation in genes directly bound by wild-type p53. DNA binding in samples expressing mutant p53 was reduced over 95% relative to wild-type p53 and very few changes in histone acetylation and no changes in DNA methylation were observed in mutant p53 expressing samples.</p> <p>Conclusion</p> <p>We conclude that wild-type p53 induces transcription of target genes by binding to DNA and differential induction of histone acetylation at target promoters. Several new wild-type p53 target genes, including <it>DGKZ</it>, <it>FBXO22 </it>and <it>GDF9</it>, were found. DNA binding of wild-type p53 is highly compromised if mutant p53 is present due to interaction of both p53 forms resulting in no direct effect on epigenetic marks.</p

    Role for DNA Methylation in the Regulation of miR-200c and miR-141 Expression in Normal and Cancer Cells

    Get PDF
    The microRNA-200 family participates in the maintenance of an epithelial phenotype and loss of its expression can result in epithelial to mesenchymal transition (EMT). Furthermore, the loss of expression of miR-200 family members is linked to an aggressive cancer phenotype. Regulation of the miR-200 family expression in normal and cancer cells is not fully understood.Epigenetic mechanisms participate in the control of miR-200c and miR-141 expression in both normal and cancer cells. A CpG island near the predicted mir-200c/mir-141 transcription start site shows a striking correlation between miR-200c and miR-141 expression and DNA methylation in both normal and cancer cells, as determined by MassARRAY technology. The CpG island is unmethylated in human miR-200/miR-141 expressing epithelial cells and in miR-200c/miR-141 positive tumor cells. The CpG island is heavily methylated in human miR-200c/miR-141 negative fibroblasts and miR-200c/miR-141 negative tumor cells. Mouse cells show a similar inverse correlation between DNA methylation and miR-200c expression. Enrichment of permissive histone modifications, H3 acetylation and H3K4 trimethylation, is seen in normal miR-200c/miR-141-positive epithelial cells, as determined by chromatin immunoprecipitation coupled to real-time PCR. In contrast, repressive H3K9 dimethylation marks are present in normal miR-200c/miR-141-negative fibroblasts and miR-200c/miR-141 negative cancer cells and the permissive histone modifications are absent. The epigenetic modifier drug, 5-aza-2′-deoxycytidine, reactivates miR-200c/miR-141 expression showing that epigenetic mechanisms play a functional role in their transcriptional control.We report that DNA methylation plays a role in the normal cell type-specific expression of miR-200c and miR-141 and this role appears evolutionarily conserved, since similar results were obtained in mouse. Aberrant DNA methylation of the miR-200c/141 CpG island is closely linked to their inappropriate silencing in cancer cells. Since the miR-200c cluster plays a significant role in EMT, our results suggest an important role for DNA methylation in the control of phenotypic conversions in normal cells

    LINE-1 Methylation Levels in Leukocyte DNA and Risk of Renal Cell Cancer

    Get PDF
    Leukocyte global DNA methylation levels are currently being considered as biomarkers of cancer susceptibility and have been associated with risk of several cancers. In this study, we aimed to examine the association between long interspersed nuclear elements (LINE-1) methylation levels, as a biomarker of global DNA methylation in blood cell DNA, and renal cell cancer risk.LINE-1 methylation of bisulfite-converted genomic DNA isolated from leukocytes was quantified by pyrosequencing measured in triplicate, and averaged across 4 CpG sites. A total of 328 RCC cases and 654 controls frequency-matched(2∶1) on age(±5years), sex and study center, from a large case-control study conducted in Central and Eastern Europe were evaluated.LINE-1 methylation levels were significantly higher in RCC cases with a median of 81.97% (interquartile range[IQR]: 80.84–83.47) compared to 81.67% (IQR: 80.35–83.03) among controls (p = 0.003, Wilcoxon). Compared to the lowest LINE-1 methylation quartile(Q1), the adjusted ORs for increasing methylation quartiles were as follows: OR(Q2) = 1.84(1.20−2.81), OR(Q3) = 1.72(1.11−2.65) and OR(Q4) = 2.06(1.34−3.17), with a p-trend = 0.004. The association was stronger among current smokers (p-trend<0.001) than former or never smokers (p-interaction = 0.03). To eliminate the possibility of selection bias among controls, the relationship between LINE-1 methylation and smoking was evaluated and confirmed in a case-only analysis, as well.Higher levels of LINE-1 methylation appear to be positively associated with RCC risk, particularly among current smokers. Further investigations using both post- and pre-diagnostic genomic DNA is warranted to confirm findings and will be necessary to determine whether the observed differences occur prior to, or as a result of carcinogenesis

    DNA Methylation Analysis of Bone Marrow Cells at Diagnosis of Acute Lymphoblastic Leukemia and at Remission

    Get PDF
    To detect genes with CpG sites that display methylation patterns that are characteristic of acute lymphoblastic leukemia (ALL) cells, we compared the methylation patterns of cells taken at diagnosis from 20 patients with pediatric ALL to the methylation patterns in mononuclear cells from bone marrow of the same patients during remission and in non-leukemic control cells from bone marrow or blood. Using a custom-designed assay, we measured the methylation levels of 1,320 CpG sites in regulatory regions of 413 genes that were analyzed because they display allele-specific gene expression (ASE) in ALL cells. The rationale for our selection of CpG sites was that ASE could be the result of allele-specific methylation in the promoter regions of the genes. We found that the ALL cells had methylation profiles that allowed distinction between ALL cells and control cells. Using stringent criteria for calling differential methylation, we identified 28 CpG sites in 24 genes with recurrent differences in their methylation levels between ALL cells and control cells. Twenty of the differentially methylated genes were hypermethylated in the ALL cells, and as many as nine of them (AMICA1, CPNE7, CR1, DBC1, EYA4, LGALS8, RYR3, UQCRFS1, WDR35) have functions in cell signaling and/or apoptosis. The methylation levels of a subset of the genes were consistent with an inverse relationship with the mRNA expression levels in a large number of ALL cells from published data sets, supporting a potential biological effect of the methylation signatures and their application for diagnostic purposes

    Epigenetic silencing of DSC3 is a common event in human breast cancer

    Get PDF
    INTRODUCTION: Desmocollin 3 (DSC3) is a member of the cadherin superfamily of calcium-dependent cell adhesion molecules and a principle component of desmosomes. Desmosomal proteins such as DSC3 are integral to the maintenance of tissue architecture and the loss of these components leads to a lack of adhesion and a gain of cellular mobility. DSC3 expression is down-regulated in breast cancer cell lines and primary breast tumors; however, the loss of DSC3 is not due to gene deletion or gross rearrangement of the gene. In this study, we examined the prevalence of epigenetic silencing of DSC3 gene expression in primary breast tumor specimens. METHODS: We used bisulfite genomic sequencing to analyze the methylation state of the DSC3 promoter region from 32 primary breast tumor specimens. We also used a quantitative real-time RT-PCR approach, and analyzed all breast tumor specimens for DSC3 expression. Finally, in addition to bisulfite sequencing and RT-PCR, we used an in vivo nuclease accessibility assay to determine the chromatin architecture of the CpG island region from DSC3-negative breast cancer cells lines. RESULTS: DSC3 expression was downregulated in 23 of 32 (72%) breast cancer specimens comprising: 22 invasive ductal carcinomas, 7 invasive lobular breast carcinomas, 2 invasive ductal carcinomas that metastasized to the lymph node, and a mucoid ductal carcinoma. Of the 23 specimens showing a loss of DSC3 expression, 13 (56%) were associated with cytosine hypermethylation of the promoter region. Furthermore, DSC3 expression is limited to cells of epithelial origin and its expression of mRNA and protein is lost in a high proportion of breast tumor cell lines (79%). Lastly, DNA hypermethylation of the DSC3 promoter is highly correlated with a closed chromatin structure. CONCLUSION: These results indicate that the loss of DSC3 expression is a common event in primary breast tumor specimens, and that DSC3 gene silencing in breast tumors is frequently linked to aberrant cytosine methylation and concomitant changes in chromatin structure

    DNA methylation changes in ovarian cancer are cumulative with disease progression and identify tumor stage

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hypermethylation of promoter CpG islands with associated loss of gene expression, and hypomethylation of CpG-rich repetitive elements that may destabilize the genome are common events in most, if not all, epithelial cancers.</p> <p>Methods</p> <p>The methylation of 6,502 CpG-rich sequences spanning the genome was analyzed in 137 ovarian samples (ten normal, 23 low malignant potential, 18 stage I, 16 stage II, 54 stage III, and 16 stage IV) ranging from normal tissue through to stage IV cancer using a sequence-validated human CpG island microarray. The microarray contained 5' promoter-associated CpG islands as well as CpG-rich satellite and Alu repetitive elements.</p> <p>Results</p> <p>Results showed a progressive de-evolution of normal CpG methylation patterns with disease progression; 659 CpG islands showed significant loss or gain of methylation. Satellite and Alu sequences were primarily associated with loss of methylation, while promoter CpG islands composed the majority of sequences with gains in methylation. Since the majority of ovarian tumors are late stage when diagnosed, we tested whether DNA methylation profiles could differentiate between normal and low malignant potential (LMP) compared to stage III ovarian samples. We developed a class predictor consisting of three CpG-rich sequences that was 100% sensitive and 89% specific when used to predict an independent set of normal and LMP samples versus stage III samples. Bisulfite sequencing confirmed the NKX-2-3 promoter CpG island was hypermethylated with disease progression. In addition, 5-aza-2'-deoxycytidine treatment of the ES2 and OVCAR ovarian cancer cell lines re-expressed NKX-2-3. Finally, we merged our CpG methylation results with previously published ovarian expression microarray data and identified correlated expression changes.</p> <p>Conclusion</p> <p>Our results show that changes in CpG methylation are cumulative with ovarian cancer progression in a sequence-type dependent manner, and that CpG island microarrays can rapidly discover novel genes affected by CpG methylation in clinical samples of ovarian cancer.</p

    A miR-200b/200c/429-Binding Site Polymorphism in the 3′ Untranslated Region of the AP-2α Gene Is Associated with Cisplatin Resistance

    Get PDF
    The transcription factor AP-2α functions as a tumor suppressor by regulating various genes that are involved in cell proliferation and apoptosis. Chemotherapeutic drugs including cisplatin induce post-transcriptionally endogenous AP-2α, which contributes to chemosensitivity by enhancing therapy-induced apoptosis. microRNAs (miRNAs) miR-200b, miR-200c and miR-429 (miR-200b/200c/429) are up-regulated in endometrial and esophageal cancers, and their overexpression correlates with resistance to cisplatin treatment. Using computational programs, we predicted that the 3′ untranslated region (UTR) of AP-2α gene contains a potential miRNA response element (MRE) for the miR-200b/200c/429 family, and the single nucleotide polymorphism (SNP) site rs1045385 (A or C allele) resided within the predicted MRE. Luciferase assays and Western blot analysis demonstrated that the miR-200b/200c/429 family recognized the MRE in the 3′ UTR of AP-2α gene and negatively regulated the expression of endogenous AP-2α proteins. SNP rs1045385 A>C variation enhanced AP-2α expression by disrupting the binding of the miR-200b/200c/429 family to the 3′ UTR of AP-2α. The effects of the two polymorphic variants on cisplatin sensitivity were determined by clonogenic assay. The overexpression of AP-2α with mutant 3′ UTR (C allele) in the endometrial cancer cell line HEC-1A, which has high levels of endogenous miR-200b/200c/429 and low levels of AP-2α protein, significantly increased cisplatin sensitivity, but overexpression of A allele of AP-2α has no significant effects, compared with mock transfection. We concluded that miR-200b/200c/429 induced cisplatin resistance by repressing AP-2α expression in endometrial cancer cells. The SNP (rs1045385) A>C variation decreased the binding of miR-200b/200c/429 to the 3′ UTR of AP-2α, which upregulated AP-2α protein expression and increased cisplatin sensitivity. Our results suggest that SNP (rs1045385) may be a potential prognostic marker for cisplatin treatment

    Reference miRNAs for miRNAome Analysis of Urothelial Carcinomas

    Get PDF
    Background/Objective: Reverse transcription quantitative real-time PCR (RT-qPCR) is widely used in microRNA (miRNA) expression studies on cancer. To compensate for the analytical variability produced by the multiple steps of the method, relative quantification of the measured miRNAs is required, which is based on normalization to endogenous reference genes. No study has been performed so far on reference miRNAs for normalization of miRNA expression in urothelial carcinoma. The aim of this study was to identify suitable reference miRNAs for miRNA expression studies by RT-qPCR in urothelial carcinoma. Methods: Candidate reference miRNAs were selected from 24 urothelial carcinoma and normal bladder tissue samples by miRNA microarrays. The usefulness of these candidate reference miRNAs together with the commonly for normalization purposes used small nuclear RNAs RNU6B, RNU48, and Z30 were thereafter validated by RT-qPCR in 58 tissue samples and analyzed by the algorithms geNorm, NormFinder, and BestKeeper. Principal Findings: Based on the miRNA microarray data, a total of 16 miRNAs were identified as putative reference genes. After validation by RT-qPCR, miR-101, miR-125a-5p, miR-148b, miR-151-5p, miR-181a, miR-181b, miR-29c, miR-324-3p, miR-424, miR-874, RNU6B, RNU48, and Z30 were used for geNorm, NormFinder, and BestKeeper analyses that gave different combinations of recommended reference genes for normalization. Conclusions: The present study provided the first systematic analysis for identifying suitable reference miRNAs for miRNA expression studies of urothelial carcinoma by RT-qPCR. Different combinations of reference genes resulted in reliable expression data for both strongly and less strongly altered miRNAs. Notably, RNU6B, which is the most frequently used reference gene for miRNA studies, gave inaccurate normalization. The combination of four (miR-101, miR-125a-5p, miR-148b, and miR-151-5p) or three (miR-148b, miR-181b, and miR-874,) reference miRNAs is recommended for normalization

    Regulation of Tumor Suppressor p53 and HCT116 Cell Physiology by Histone Demethylase JMJD2D/KDM4D

    Get PDF
    JMJD2D, also known as KDM4D, is a histone demethylase that removes methyl moieties from lysine 9 on histone 3 and from lysine 26 on histone 1.4. Here, we demonstrate that JMJD2D forms a complex with the p53 tumor suppressor in vivo and interacts with the DNA binding domain of p53 in vitro. A luciferase reporter plasmid driven by the promoter of p21, a cell cycle inhibitor and prominent target gene of p53, was synergistically activated by p53 and JMJD2D, which was dependent on JMJD2D catalytic activity. Likewise, overexpression of JMJD2D induced p21 expression in U2OS osteosarcoma cells in the absence and presence of adriamycin, an agent that induces DNA damage. Furthermore, downregulation of JMJD2D inhibited cell proliferation in wild-type and even more so in p53−/− HCT116 colon cancer cells, suggesting that JMJD2D is a pro-proliferative molecule. JMJD2D depletion also induced more strongly apoptosis in p53−/− compared to wild-type HCT116 cells. Collectively, our results demonstrate that JMJD2D can stimulate cell proliferation and survival, suggesting that its inhibition may be helpful in the fight against cancer. Furthermore, our data imply that activation of p53 may represent a mechanism by which the pro-oncogenic functions of JMJD2D become dampened

    Prenatal Arsenic Exposure Alters Gene Expression in the Adult Liver to a Proinflammatory State Contributing to Accelerated Atherosclerosis

    Get PDF
    The mechanisms by which environmental toxicants alter developmental processes predisposing individuals to adult onset chronic disease are not well-understood. Transplacental arsenic exposure promotes atherogenesis in apolipoprotein E-knockout (ApoE−/−) mice. Because the liver plays a central role in atherosclerosis, diabetes and metabolic syndrome, we hypothesized that accelerated atherosclerosis may be linked to altered hepatic development. This hypothesis was tested in ApoE−/− mice exposed to 49 ppm arsenic in utero from gestational day (GD) 8 to term. GD18 hepatic arsenic was 1.2 µg/g in dams and 350 ng/g in fetuses. The hepatic transcriptome was evaluated by microarray analysis to assess mRNA and microRNA abundance in control and exposed pups at postnatal day (PND) 1 and PND70. Arsenic exposure altered postnatal developmental trajectory of mRNA and microRNA profiles. We identified an arsenic exposure related 51-gene signature at PND1 and PND70 with several hubs of interaction (Hspa8, IgM and Hnf4a). Gene ontology (GO) annotation analyses indicated that pathways for gluconeogenesis and glycolysis were suppressed in exposed pups at PND1, and pathways for protein export, ribosome, antigen processing and presentation, and complement and coagulation cascades were induced by PND70. Promoter analysis of differentially-expressed transcripts identified enriched transcription factor binding sites and clustering to common regulatory sites. SREBP1 binding sites were identified in about 16% of PND70 differentially-expressed genes. Western blot analysis confirmed changes in the liver at PND70 that included increases of heat shock protein 70 (Hspa8) and active SREBP1. Plasma AST and ALT levels were increased at PND70. These results suggest that transplacental arsenic exposure alters developmental programming in fetal liver, leading to an enduring stress and proinflammatory response postnatally that may contribute to early onset of atherosclerosis. Genes containing SREBP1 binding sites also suggest pathways for diabetes mellitus and rheumatoid arthritis, both diseases that contribute to increased cardiovascular disease in humans
    • …
    corecore