101 research outputs found

    Experimental evidence for a surface distribution of two-level systems in superconducting lithographed microwave resonators

    Get PDF
    We present measurements of the temperature-dependent frequency shift of five niobium superconducting coplanar waveguide microresonators with center strip widths ranging from 3 μ\mum to 50 μ\mum, taken at temperatures in the range 100-800 mK, far below the 9.2 K transition temperature of niobium. These data agree well with the two-level system (TLS) theory. Fits to this theory provide information on the number of TLS that interact with each resonator geometry. The geometrical scaling indicates a surface distribution of TLS, and the data are consistent with a TLS surface layer thickness of order a few nm, as might be expected for a native oxide layer.Comment: 3 figures, submitted to AP

    Particle astrophysics

    Get PDF
    The following scientific areas are reviewed: (1) cosmology and particle physics (particle physics and the early universe, dark matter, and other relics); (2) stellar physics and particles (solar neutrinos, supernovae, and unconventional particle physics); (3) high energy gamma ray and neutrino astronomy; (4) cosmic rays (space and ground observations). Highest scientific priorities for the next decade include implementation of the current program, new initiatives, and longer-term programs. Essential technological developments, such as cryogenic detectors of particles, new solar neutrino techniques, and new extensive air shower detectors, are discussed. Also a certain number of institutional issues (the funding of particle astrophysics, recommended funding mechanisms, recommended facilities, international collaborations, and education and technology) which will become critical in the coming decade are presented

    Collection of Athermal Phonons into Doped Germanium Thermistors Using Quasiparticle Trapping

    Get PDF
    We have developed a low‐temperature particle detector that uses a novel quasiparticle trapping mechanism to funnel athermal phonon energy from an 80 mg Ge absorber into a 1.6 mg doped Ge thermistor via a superconducting Al film. We report on pulse height spectra obtained at 320 mK by scanning a 241Am alpha source along the device, and show that up to 20% of the energy deposited in the Ge absorber by a 5.5 MeV alpha particle interaction can be collected into a thermistor via quasiparticle trapping. We show that this device is sensitive to the position of an alpha particle interaction in the Ge absorber for interaction distances of up to 5 mm from a quasiparticle trap

    A semi-empirical model for two-level system noise in superconducting microresonators

    Get PDF
    We present measurements of the low--temperature excess frequency noise of four niobium superconducting coplanar waveguide microresonators, with center strip widths srs_r ranging from 3 μ\mum to 20 μ\mum. For a fixed internal power, we find that the frequency noise decreases rapidly with increasing center strip width, scaling as 1/sr1.61/s_r^{1.6}. We show that this geometrical scaling is readily explained by a simple semi-empirical model which assumes a surface distribution of independent two-level system fluctuators. These results allow the resonator geometry to be optimized for minimum noise.Comment: 3 fig

    Model-Independent Comparison of Direct vs. Indirect Detection of Supersymmetric Dark Matter

    Get PDF
    We compare the rate for elastic scattering of neutralinos from various nuclei with the flux of upward muons induced by energetic neutrinos from neutralino annihilation in the Sun and Earth. We consider both scalar and axial-vector interactions of neutralinos with nuclei. We find that the event rate in a kg of germanium is roughly equivalent to that in a 10510^5- to 10710^7-m2^2 muon detector for a neutralino with primarily scalar coupling to nuclei. For an axially coupled neutralino, the event rate in a 50-gram hydrogen detector is roughly the same as that in a 10- to 500-m2^2 muon detector. Expected experimental backgrounds favor forthcoming elastic-scattering detectors for scalar couplings while the neutrino detectors have the advantage for axial-vector couplings.Comment: 10 pages, self-unpacking uuencoded PostScript fil

    Measurement of ionization and phonon production by nuclear recoils in a 60 g crystal of germanium at 25 mK

    Get PDF
    We report on the first measurement of the absolute phonon energy and the amount of ionization produced by the recoil of nuclei and electrons in a 60 g germanium cyrstal at a temperature of ≊25 mK. We find good agreement between our results and previous measurements of ionization yield from nuclear recoils in germanium. Our device achieves 10:1 discrimination between neutrons and photons in the few keV energy range, demonstrating the feasibility of this technique for large reductions of background in searches for direct interactions of weakly interacting massive particle dark matter
    corecore