52 research outputs found

    Diffusion-Reorganized Aggregates: Attractors in Diffusion Processes?

    Full text link
    A process based on particle evaporation, diffusion and redeposition is applied iteratively to a two-dimensional object of arbitrary shape. The evolution spontaneously transforms the object morphology, converging to branched structures. Independently of initial geometry, the structures found after long time present fractal geometry with a fractal dimension around 1.75. The final morphology, which constantly evolves in time, can be considered as the dynamic attractor of this evaporation-diffusion-redeposition operator. The ensemble of these fractal shapes can be considered to be the {\em dynamical equilibrium} geometry of a diffusion controlled self-transformation process.Comment: 4 pages, 5 figure

    Optimal branching asymmetry of hydrodynamic pulsatile trees

    Full text link
    Most of the studies on optimal transport are done for steady state regime conditions. Yet, there exists numerous examples in living systems where supply tree networks have to deliver products in a limited time due to the pulsatile character of the flow. This is the case for mammals respiration for which air has to reach the gas exchange units before the start of expiration. We report here that introducing a systematic branching asymmetry allows to reduce the average delivery time of the products. It simultaneously increases its robustness against the unevitable variability of sizes related to morphogenesis. We then apply this approach to the human tracheobronchial tree. We show that in this case all extremities are supplied with fresh air, provided that the asymmetry is smaller than a critical threshold which happens to fit with the asymmetry measured in the human lung. This could indicate that the structure is adjusted at the maximum asymmetry level that allows to feed all terminal units with fresh air.Comment: 4 pages, 4 figure

    Mon beau Japon

    Get PDF

    Editorial

    No full text

    Mon beau Japon

    No full text

    Optimisations and evolution of the mammalian respiratory system

    No full text
    The respiratory system of mammalians is made of two successive branched structures with different physiological functions. The upper structure, or bronchial tree, is a fluid transportation system made of approximately 15 generations of bifurcations leading to the order of about 215 = 30, 000 terminal bronchioles with a diameter of approximately 0.5mm in the human lung. The branching pattern continues up to generation 23 but the structure and function of each of the subsequent structures, called acini, is different. Each acinus consists in a branched system of ducts surrounded by alveoli and plays the role of a diffusion cell where oxygen and carbon dioxide are exchanged with blood across the alveolar membrane. We show here that the bronchial tree simultaneously presents several different optimal properties. It is first energy efficient, second, it is space filling and third it is also “rapid”. This physically based multi-optimality suggests that, in the course of evolution, an organ selected against one criterion could have been used later for a totally different purpose. For example, once selected for its energetic efficiency for the transport of a viscous fluid like blood, the same genetic material could have been used for its optimized rapidity. This would have allowed the emergence of atmospheric respiration made of inspiration-expiration cycles. For this phenomenon to exist, rapidity is essential as fresh air has to reach the gas exchange organs, the pulmonary acini, before the beginning of expiration. We finally show that the pulmonary acinus is optimized in the sense that the acinus morphology is directly related to the notion of a “best possible” extraction of entropic energy by a diffusion exchanger that has to feed oxygen efficiently from air to blood across a membrane of finite permeability

    Dynamique du transport et du transfert de l'oxygène au sein de l'acinus pulmonaire humain

    No full text
    en français : L'acinus pulmonaire constitue l'unité d'échange gazeux entre l'air et le sang dans les voies aériennes pulmonaires. Dans le cadre de cette thèse, nous nous sommes plus particulièrement intéressés à l'oxygène. Plusieurs mécanismes sont mis en jeu depuis son entrée dans l'acinus jusqu'à sa capture par l'hémoglobine : les mécanismes de transport de l'oxygène dans l'air : convection et diffusion, le transfert par diffusion passive de l'oxygène à travers la membrane alvéolo-capillaire et sa capture par l'hémoglobine. Par la détermination de la capacité diffusive pulmonaire DL, il est possible d'évaluer cliniquement le fonctionnement et l'efficacité de ces mécanismes. Cette mesure est couramment employée pour le diagnostic, notamment pour mettre en évidence les détériorations de la membrane alvéolo-capillaire ou encore les pertes de surface d'échange. Expérimentalement, la DL s'exprime à partir des deux mesures cliniques suivantes: la pression alvéolaire PA et la consommation de gaz V. Plus particulièrement, dans le cas qui nous intéresse ici soit celui de l'oxygène, il s'agit de la pression partielle en oxygène contenue dans les alvéoles pulmonaires PA,O2 et de la quantité d'oxygène échangée en une minute VO2. Il est possible de déterminer une valeur théorique de la capacité diffusive pulmonaire grâce à une formulation classique et empirique très utilisée en médecine. Celle-ci est aujourd'hui encore le sujet de nombreuses publications car elle ne reproduit pas exactement les résultats de l'expérience. Nous avons mis en place un modèle numérique dynamique du transport et du transfert de l'oxygène au sein de l'acinus pulmonaire permettant de restituer les valeurs de PA,O2 et VO2 chez les sujets sains. Ce modèle dépend d'un unique paramètre physique ajustable qu'on appelle la perméabilité W. Celle-ci traduit toute la complexité du transfert de l'oxygène vers le sang. Elle se définit comme une conductance équivalente imposée par les trois mécanismes acteurs du transfert vers le sang. Par cette approche numérique, nous avons donc construit un acinus artificiel qui, à partir de la seule détermination de la perméabilité W est capable de reproduire le fonctionnement de l'acinus réel. A partir de ce modèle, nous avons pu étudier l'influence de la géométrie asymétrique de l'acinus pulmonaire sur le transport et l'échange. Cette étude a mis en évidence une forte hétérogénéité de la répartition du flux d'oxygène échangé vers le sang dans l'acinus pulmonaire. Ceci peut s'expliquer grâce à un phénomène physique appelé masquage diffusionnel, responsable du fait que la pression partielle en oxygène dans l'acinus diminue. Ce phénomène est gouverné, notamment, par l'absorption à travers la membrane alvéolaire et la diffusion le long de la structure irrégulière de l'acinus. Cet effet entraîne que les parties profondes de l'acinus sont très peu alimentées en oxygène, la majorité ayant été absorbée dans les premières générations. Au repos, l'influence du masquage est élevée et le flux d'oxygène ne dépend que très peu du volume (proportionnel à la surface alvéolaire). A l'effort, l'effet du masquage est moindre, notamment grâce à la vitesse de convection plus élevée. Ainsi, la quasi-totalité de la surface alvéolaire est utilisée.PALAISEAU-Polytechnique (914772301) / SudocSudocFranceF
    corecore