Most of the studies on optimal transport are done for steady state regime
conditions. Yet, there exists numerous examples in living systems where supply
tree networks have to deliver products in a limited time due to the pulsatile
character of the flow. This is the case for mammals respiration for which air
has to reach the gas exchange units before the start of expiration. We report
here that introducing a systematic branching asymmetry allows to reduce the
average delivery time of the products. It simultaneously increases its
robustness against the unevitable variability of sizes related to
morphogenesis. We then apply this approach to the human tracheobronchial tree.
We show that in this case all extremities are supplied with fresh air, provided
that the asymmetry is smaller than a critical threshold which happens to fit
with the asymmetry measured in the human lung. This could indicate that the
structure is adjusted at the maximum asymmetry level that allows to feed all
terminal units with fresh air.Comment: 4 pages, 4 figure