1,813 research outputs found

    Non-relativistic limit in the 2+1 Dirac Oscillator: A Ramsey Interferometry Effect

    Get PDF
    We study the non-relativistic limit of a paradigmatic model in Relativistic Quantum Mechanics, the two-dimensional Dirac oscillator. Remarkably, we find a novel kind of Zitterbewegung which persists in this non-relativistic regime, and leads to an observable deformation of the particle orbit. This effect can be interpreted in terms of a Ramsey Interferometric phenomenon, allowing an insightful connection between Relativistic Quantum Mechanics and Quantum Optics. Furthermore, subsequent corrections to the non-relativistic limit, which account for the usual spin-orbit Zitterbewegung, can be neatly understood in terms of a Mach-Zehnder interferometer.Comment: RevTex4 file, color figures, submitted for publicatio

    Interaction-dependent photon-assisted tunneling in optical lattices: a quantum simulator of strongly-correlated electrons and dynamical gauge fields

    Get PDF
    We introduce a scheme that combines photon-assisted tunneling by a moving optical lattice with strong Hubbard interactions, and allows for the quantum simulation of paradigmatic quantum many-body models. We show that, in a certain regime, this quantum simulator yields an effective Hubbard Hamiltonian with tunable bond-charge interactions, a model studied in the context of strongly-correlated electrons. In a different regime, we show how to exploit a correlated destruction of tunneling to explore Nagaoka ferromagnetism at finite Hubbard repulsion. By changing the photon-assisted tunneling parameters, we can also obtain a t-J model with independently controllable tunneling t, super-exchange interaction J, and even a Heisenberg-Ising anisotropy. Hence, the full phase diagram of this paradigmatic model becomes accessible to cold-atom experiments, departing from the region t _ J allowed by standard single-band Hubbard Hamiltonians in the strong-repulsion limit. We finally show that, by generalizing the photon-assisted tunneling scheme, the quantum simulator yields models of dynamical Gauge fields, where atoms of a given electronic state dress the tunneling of the atoms with a different internal state, leading to Peierls phases that mimic a dynamical magnetic field

    Edge states of graphene bilayer strip

    Full text link
    The electronic structure of the zig-zag bilayer strip is analyzed. The electronic spectra of the bilayer strip is computed. The dependence of the edge state band flatness on the bilayer width is found. The density of states at the Fermi level is analytically computed. It is shown that it has the singularity which depends on the width of the bilayer strip. There is also asymmetry in the density of states below and above the Fermi energy.Comment: 9 page

    Surface Enhanced Second Harmonic Generation from Macrocycle, Catenane, and Rotaxane Thin Films: Experiments and Theory

    Get PDF
    Surface enhanced second harmonic generation (SE SHG) experiments on molecular structures, macrocycles, catenanes, and rotaxanes, deposited as monolayers and multilayers by vacuum sublimation on silver, are reported. The measurements show that the molecules form ordered thin films, where the highest degree of order is observed in the case of macrocycle monolayers and the lowest in the case of rotaxane multilayers. The second harmonic generation activity is interpreted in terms of electric field induced second harmonic (EFISH) generation where the electric field is created by the substrate silver atoms. The measured second order nonlinear optical susceptibility for a rotaxane thin film is compared with that obtained by considering only EFISH contribution to SHG intensity. The electric field on the surface of a silver layer is calculated by using the Delphi4 program for structures obtained with TINKER molecular mechanics/dynamics simulations. An excellent agreement is observed between the calculated and the measured SHG susceptibilities.

    PADC Detected External Neutron Field by Nuclear Tracks at RFX-mod

    Get PDF
    Measured neutron signals relevant for plasma diagnostics on Reversed Field pinch eXperiment, RFX-mod, are obtained by nuclear track methodology with PADC-NtD’s. this technique provides the external neutron field values around the RFX-mod installation during pulsed operation. Charged particles from (n, p) and (n, α) reactions are related to formed latent tracks. these are etched in a thermoregulated water bath with a 6.25M, KOh solution at 60oC. Observed tracks were analyzed to determine track density from which neutron fluence spatial values should be derived. Results indicate that the neutron density in the surrounding environment change at most 40%. the epithermal component is 60% higher than that corresponding to the thermal region. the estimated neutron fluence for the whole experiment is 7.5×1010 neutrons cm2/s

    GRAVITY Spectro-interferometric Study of the Massive Multiple Stellar System HD 93206 A

    Get PDF
    Characterization of the dynamics of massive star systems and the astrophysical properties of the interacting components are a prerequisite for understanding their formation and evolution. Optical interferometry at milliarcsecond resolution is a key observing technique for resolving high-mass multiple compact systems. Here, we report on Very Large Telescope Interferometer/GRAVITY, Magellan/Folded-port InfraRed Echellette, and MPG2.2 m/FEROS observations of the late-O/early-B type system HD 93206 A, which is a member of the massive cluster Collinder 228 in the Carina nebula complex. With a total mass of about 90M90\,{M}_{\odot }, it is one of the most compact massive quadruple systems known. In addition to measuring the separation and position angle of the outer binary Aa–Ac, we observe Brγ and He i variability in phase with the orbital motion of the two inner binaries. From the differential phase (Δϕ{{\rm{\Delta }}}_{\phi }) analysis, we conclude that the Brγ emission arises from the interaction regions within the components of the individual binaries, which is consistent with previous models for the X-ray emission of the system based on wind–wind interaction. With an average 3σ deviation of Δϕ15{{\rm{\Delta }}}_{\phi }\sim 15^\circ , we establish an upper limit of p ~ 0.157 mas (0.35 au) for the size of the Brγ line-emitting region. Future interferometric observations with GRAVITY using the 8 m Unit Telescopes will allow us to constrain the line-emitting regions down to angular sizes of 20 μas (0.05 au at the distance of the Carina nebula)

    Determination of Lightning Currents from Far Electromagnetic Fields: Effect of a Strike Object

    Get PDF
    We discuss in this paper the influence of the presence of an elevated strike object on the peak of the lightning return stroke current determined from remote field measurements. We develop analytical expressions relating the lightning return stroke channel-base current and the far electromagnetic field for different specific cases, namely, (1) ground-initiated return strokes (classical transmission line (TL) model), (2) ground-initiated return strokes including possible reflections at ground level, (3) tall strike objects for which the current's zero-to-peak time is smaller than the travel time along the object, and (4) electrically short strike objects. It is shown that for tall structures, the field enhancement relative to a return stroke initiated at ground level is expressed through a factor equal to ktall = [1 + c / v (1 - 2 ρt)] / (1 - ρt), where v and c are the return stroke front speed and the speed of light in vacuum, respectively, and ρt is the top reflection coefficient. For very short towers and/or very slow return stroke current wavefronts, when the condition tf very much greater than h / c applies, expressions relating the far electromagnetic field and the return stroke current were also derived. For case (2), return strokes initiated at ground level, the field enhancement relative to a return stroke initiated at ground level, case (1), is expressed through a factor equal to kshort = (1 + (c / v) ρch - g) / (1 + ρch - g), where ρch-g represents the reflection coefficient between the lightning channel and the grounding impedance

    Multi-epoch VLTI-PIONIER imaging of the supergiant V766 Cen: Image of the close companion in front of the primary

    Get PDF
    Context. The star V766 Cen (=HR 5171A) was originally classified as a yellow hypergiant but lately found to more likely be a 27−36 M⊙ red supergiant (RSG). Recent observations indicated a close eclipsing companion in the contact or common-envelope phase

    Modeling the series of (n x 2) Si-rich reconstructions of beta-SiC(001): a prospective atomic wire?

    Full text link
    We perform ab initio plane wave supercell density functional calculations on three candidate models of the (3 x 2) reconstruction of the beta-SiC(001) surface. We find that the two-adlayer asymmetric-dimer model (TAADM) is unambiguously favored for all reasonable values of Si chemical potential. We then use structures derived from the TAADM parent to model the silicon lines that are observed when the (3 x 2) reconstruction is annealed (the (n x 2) series of reconstructions), using a tight-binding method. We find that as we increase n, and so separate the lines, a structural transition occurs in which the top addimer of the line flattens. We also find that associated with the separation of the lines is a large decrease in the HOMO-LUMO gap, and that the HOMO state becomes quasi-one-dimensional. These properties are qualititatively and quantitatively different from the electronic properties of the original (3 x 2) reconstruction.Comment: 22 pages, including 6 EPS figure

    Photonic zitterbewegung and its interpretation

    Full text link
    In term of the volume-integrated Poynting vector, we present a quantum field-theory investigation on the zitterbewegung (ZB) of photons, and show that this ZB occurs only in the presence of virtual longitudinal and scalar photons. To present a heuristic explanation for such ZB, by assuming that the space time is sufficiently close to the flat Minkowski space, we show that the gravitational interaction can result in the ZB of photons.Comment: 9 pages, no figure, to be published in Chinese Physics
    corecore