15 research outputs found

    Planning precision aquaculture activities in a changing and crowded sea

    Get PDF
    Extreme climate events are increasingly challenging the growth of the marine aquaculture sector, causing local influences on species performance and affecting production and yield - impacting where to locate cage aquaculture facilities. Here we produced scenario-based quantitative maps using modelled species-specific performance combined with predicted high-resolution future IPCC temperature scenarios. We ran a species-specific Dynamic Energy Budget mechanistic model for four model species, up to 2050, and mapped functional trait-based outcomes as: i) time to reach the commercial size, ii) feces produced and iii) uneaten food. A high spatial resolution suitability index allowed the sustainability of farming strategies for single- and multi-species to be identified across a 159.696 km2 surface extension (Italian Exclusive Economic Zone; 6% of the Mediterranean basin surface). Providing a good case study to shed light on difficult questions facing aquaculture planning around the world. Good future performance under both representative concentration pathway (RCP) scenarios were modelled for Sea bream and European seabass in inshore waters. Performance of Mediterranean mussels and Japanese oysters was found to decrease slightly when compared to the 2007–2010 time interval. Scenario-based quantitative maps represent a heterogeneous species-specific knowledge layer that is critical to better inform aquaculture management and development strategies. Yet this knowledge layer is missing from the process to develop climate-resilient risk maps and associated adaptation measures, as well as when informing stakeholders on potential site expansion and/or the establishment of nascent aquaculture industry sites

    The aquaculture supply chain in the time of covid-19 pandemic: vulnerability, resilience, solutions and priorities at the global scale

    Get PDF
    The COVID-19 global pandemic has had severe, unpredictable and synchronous impacts on all levels of perishable food supply chains (PFSC), across multiple sectors and spatial scales. Aquaculture plays a vital and rapidly expanding role in food security, in some cases overtaking wild caught fisheries in the production of high-quality animal protein in this PFSC. We performed a rapid global assessment to evaluate the effects of the COVID-19 pandemic and related emerging control measures on the aquaculture supply chain. Socio-economic effects of the pandemic were analysed by surveying the perceptions of stakeholders, who were asked to describe potential supply-side disruption, vulnerabilities and resilience patterns along the production pipeline with four main supply chain components: a) hatchery, b) production/processing, c) distribution/logistics and d) market. We also assessed different farming strategies, comparing land- vs. sea-based systems; extensive vs. intensive methods; and with and without integrated multi-trophic aquaculture, IMTA. In addition to evaluating levels and sources of economic distress, interviewees were asked to identify mitigation solutions adopted at local / internal (i.e., farm-site) scales, and to express their preference on national / external scale mitigation measures among a set of a priori options. Survey responses identified the potential causes of disruption, ripple effects, sources of food insecurity, and socio-economic conflicts. They also pointed to various levels of mitigation strategies. The collated evidence represents a first baseline useful to address future disaster-driven responses, to reinforce the resilience of the sector and to facilitate the design reconstruction plans and mitigation measures, such as financial aid strategies.publishe

    The synergistic impacts of anthropogenic stressors and COVID-19 on aquaculture: a current global perspective

    Get PDF
    The rapid, global spread of COVID-19, and the measures intended to limit or slow its propagation, are having major impacts on diverse sectors of society. Notably, these impacts are occurring in the context of other anthropogenic-driven threats including global climate change. Both anthropogenic stressors and the COVID-19 pandemic represent significant economic challenges to aquaculture systems across the globe, threatening the supply chain of one of the most important sources of animal protein, with potential disproportionate impacts on vulnerable communities. A web survey was conducted in 47 countries in the midst of the COVID-19 pandemic to assess how aquaculture activities have been affected by the pandemic, and to explore how these impacts compare to those from climate change. A positive correlation between the effects of the two categories of drivers was detected, but analysis suggests that the pandemic and the anthropogenic stressors affect different parts of the supply chain. The immediate measurable reported losses varied with aquaculture typology (land vs. marine, and intensive vs. extensive). A comparably lower impact on farmers reporting the use of integrated multitrophic aquaculture (IMTA) methods suggests that IMTA might enhance resilience to multiple stressors by providing different market options under the COVID-19 pandemic. Results emphasize the importance of assessing detrimental effects of COVID-19 under a multiple stressor lens, focusing on areas that have already locally experienced economic loss due to anthropogenic stressors in the last decade. Holistic policies that simultaneously address other ongoing anthropogenic stressors, rather than focusing solely on the acute impacts of COVID-19, are needed to maximize the long-term resilience of the aquaculture sector.publishe

    Functional Trait-Based Evidence of Microplastic Effects on Aquatic Species

    No full text
    Microplastics represent an ever-increasing threat to aquatic organisms. We merged data from two global scale meta-analyses investigating the effect of microplastics on benthic organisms’ and fishes’ functional traits. Results were compared, allowing differences related to vertebrate and invertebrate habitat, life stage, trophic level, and experimental design to be explored. Functional traits of aquatic organisms were negatively affected. Metabolism, growth, and reproduction of benthic organisms were impacted, and fish behaviour was significantly affected. Responses differed by trophic level, suggesting negative effects on trophic interactions and energy transfer through the trophic web. The experimental design was found to have the most significant impact on results. As microplastics impact an organism’s performance, this causes indirect repercussions further up the ecological hierarchy on the ecosystem’s stability and functioning, and its associated goods and services are at risk. Standardized methods to generate salient targets and indicators are urgently needed to better inform policy makers and guide mitigation plans

    Effects of microplastics on the functional traits of aquatic benthic organisms: A global-scale meta-analysis

    No full text
    Microplastics are widespread in the aquatic environment and thus available for many organisms at different trophic levels. Many scientific papers focus their attention on the study of the effects of microplastics on different species at individual level. Here we performed a global scale meta-analysis focusing our work on the study of the effect of microplastics on the functional traits of aquatic benthic organisms. Overall, microplastics showed a moderate negative effect on the examined functional traits of benthic organisms. Our results show that some crucial functional traits, such as those linked to behaviour and feeding, appear to be unaffected by microplastics. In contrast, traits related to the capacity of organisms to assimilate energy are affected. Moreover, traits with possible effects at population level appear to be negatively affected by microplastics. We discuss how the direct impact of organismal performance may have indirect repercussions at higher levels in the ecological hierarchy and represent a risk for the stability and functioning of the ecosystem

    Microplastics and the functional traits of fishes: A global meta-analysis

    No full text
    Over the years, concern about the effects of microplastics has grown. Here, we answered the main question “What are the impacts of microplastics on the functional traits of fish species?” through a meta-analysis. The general impact of microplastic exposure on the functional traits of fishes and specifically on eight variables, namely, behaviour, development, fecundity, feeding, growth, health, hatching and survival was explored. Subgroup analyses were performed to detect correlations between the impact of microplastics and the following factors: species, life stage, habitat, water column habitat, day of exposure to microplastics and microplastic size, type and shape. A meta-regression analysis allowed understanding the correlation between the impact of microplastics and the size of organisms. Generally, microplastics have a negative effect on the functional traits of fishes. Feeding and behaviour, followed by growth showed the greatest impact. Among the subgroup analysis, four of the eight variables considered showed a significant difference between groups: species, life stage, microplastic shape and days of exposure to microplastics. Depending on their life stage, organisms may be more sensitive to microplastic pollution. Changes in growth rates, development of early life stage and behavioural patterns in fishes may have a negative effect on the structure and functions of aquatic ecosystem in the long term and consequently affect the ability of aquatic ecosystems to provide ecosystem services and sustain human communities

    Planning precision aquaculture activities in a changing and crowded sea

    No full text
    Extreme climate events are increasingly challenging the growth of the marine aquaculture sector, causing local influences on species performance and affecting production and yield - impacting where to locate cage aquaculture facilities. Here we produced scenario-based quantitative maps using modelled species-specific performance combined with predicted high-resolution future IPCC temperature scenarios. We ran a species-specific Dynamic Energy Budget mechanistic model for four model species, up to 2050, and mapped functional traitbased outcomes as: i) time to reach the commercial size, ii) feces produced and iii) uneaten food. A high spatial resolution suitability index allowed the sustainability of farming strategies for single- and multi-species to be identified across a 159.696 km2 surface extension (Italian Exclusive Economic Zone; 6% of the Mediterranean basin surface). Providing a good case study to shed light on difficult questions facing aquaculture planning around the world. Good future performance under both representative concentration pathway (RCP) scenarios were modelled for Sea bream and European seabass in inshore waters. Performance of Mediterranean mussels and Japanese oysters was found to decrease slightly when compared to the 2007-2010 time interval. Scenariobased quantitative maps represent a heterogeneous species-specific knowledge layer that is critical to better inform aquaculture management and development strategies. Yet this knowledge layer is missing from the process to develop climate-resilient risk maps and associated adaptation measures, as well as when informing stakeholders on potential site expansion and/or the establishment of nascent aquaculture industry sites

    The Aquaculture Supply Chain In The Time Of Covd-19 Pandemic: Vulnerability, Resilience, Solutions And Priorities At The Global Scale

    Full text link
    [EN] The COVID-19 global pandemic has had severe, unpredictable and synchronous impacts on all levels of perishable food supply chains (PFSC), across multiple sectors and spatial scales. Aquaculture plays a vital and rapidly expanding role in food security, in some cases overtaking wild caught fisheries in the production of high quality animal protein in this PFSC. We performed a rapid global assessment to evaluate the effects of the COVID19 pandemic and related emerging control measures on the aquaculture supply chain. Socio-economic effects of the pandemic were analysed by surveying the perceptions of stakeholders, who were asked to describe potential supply-side disruption, vulnerabilities and resilience patterns along the production pipeline with four main supply chain components: a) hatchery, b) production/processing, c) distribution/logistics and d) market. We also assessed different farming strategies, comparing land-vs. sea-based systems; extensive vs. intensive methods; and with and without integrated multi-trophic aquaculture, IMTA. In addition to evaluating levels and sources of economic distress, interviewees were asked to identify mitigation solutions adopted at local / internal (i.e., farm site) scales, and to express their preference on national / external scale mitigation measures among a set of a priori options. Survey responses identified the potential causes of disruption, ripple effects, sources of food insecurity, and socio-economic conflicts. They also pointed to various levels of mitigation strategies. The collated evidence represents a first baseline useful to address future disaster-driven responses, to reinforce the resilience of the sector and to facilitate the design reconstruction plans and mitigation measures, such as financial aid strategies.We are grateful to all the respondents who took the time to take the survey and to many colleagues for their effort done in facilitating the circulation of questionnaires. M.C.M.'s research activity was supported by the European Union's Horizon 2020 Research and Innovation pro-gramme under the Marie Skodowska-Curie Action (Grant agreement no. 835589, MIRROR Project) . People at the Laboratory of Ecology have been funded by the PRIN-MAHRES project (Ministry of Italian Research; MUR-017MHHWBN_003 Linea C) and by the Interreg Italia-Malta HARMONY 2016 (Grant C1-3.1-31) . C. Pita and A. Nogueira would like to thank FCT/MCTES for the financial support to CESAM (UIDP/50017/2020+UIDB/50017/2020) , through national funds. J.M.F. Babarro thanks project PID2019-106008RB-C21 for support through Spanish Government funds. The authors would like to thank also the ERASMUS+-FISHAQU project (No. 610071-EPP-1-2019-1-PT-EPPKA2-CBHE-JP) . We deeply thank Mr. Gaspare Barbera for his technical feedback during the questionnaire design looking at it under the lens of a stakeholder. We are grateful to QUALTRICS (Inc. USA) Product Spe-cialists based in Italy to have always answered to queries about software technicality. We recognised the wide, prompt and effective support offered by the Ethical Committee at the University of Palermo in assessing the questionnaire.Mangano, MC.; Berlino, M.; Corbari, L.; Milisenda, G.; Lucchese, M.; Terzo, S.; Bosch-Belmar, M.... (2022). The Aquaculture Supply Chain In The Time Of Covd-19 Pandemic: Vulnerability, Resilience, Solutions And Priorities At The Global Scale. Environmental Science & Policy. 127:98-110. https://doi.org/10.1016/j.envsci.2021.10.0149811012

    Like night and day: Reversals of thermal gradients across ghost crab burrows and their implications for thermal ecology

    No full text
    Ghost crabs, Ocypode cordimanus, inhabit relatively hostile environments subject to thermal fluctuations, including both diurnal and seasonal cycles. For many ectotherms, including ghost crabs, a major challenge is to remain cool during hot daytime temperatures. This can be achieved by adopting a fossorial lifestyle, taking advantage of thermal refuge afforded by burrows of sufficient depth. Another consideration, often overlooked, is the potential advantage associated with ready access to a thermal energy source (a “charging station”) when surface temperatures are cooler. Being able to rapidly elevate body temperature during cool periods would enhance the crab's ability to maintain rate processes and carry out essential activities. We have measured ghost crab burrow temperature profiles at two times of the day with contrasting sun exposure (06:00 and 14:00), demonstrating how effective burrow depth (up to a maximum of 40 cm) provides thermal regulation below the surface of the sand (e.g., at dawn (06:00) and early afternoon (14:00) at a depth of 5 cm, temperatures (±SD) of 16.32 ± 0.96 °C and 25.04 ± 1.47 °C were recorded, respectively. Corresponding temperatures at a depth of 30 cm were 19.17 ± 0.59 °C and 19.78 ± 1.60 °C, respectively). This demonstrates that while temperature conditions at the surface vary dramatically from night to day, ghost crab burrows can maintain relatively constant temperatures at the burrow base throughout the diurnal cycle, at least during winter. As a consequence, the burrow heat signatures undergo a corresponding thermal gradient reversal between night and day, as revealed by infra-red photography. Complementing these field observations, we also determined heating and cooling times/constants for O. cordimanus in the laboratory (τ = 17.54 and 16.59 JK-1, respectively), and analysed chemical composition of their carapace (external (with β Chitin evident) and internal (predominance of α Chitin)), which is the primary thermal interface with the environment. We find that ghost crabs both gain and lose heat relatively rapidly, which likely affects the range and duration of surface activities under different thermal conditions, and renders the thermal characteristics of their burrows vital for their persistence on beaches. Finally, we speculate that the distinctly contrasting thermal signatures of ghost crab burrows in comparison to the surrounding sand could in principle be used by crabs as spatial markers for navigation and to identify holes on return from nightly excursions, being identified either by direct thermal sensing or odours rising from the burrow base as a consequence of the thermal flux

    The stakeholder's perception of socio-economic impacts generated by COVID-19 pandemic within the Italian aquaculture systems

    No full text
    From the beginning of March 2020 and for the following two and half months, many European countries comprising Italy have been forced into an unprecedented lockdown, allowing only the opening of essential economic activities needed to address the problems created by the pandemic (e.g. sanitary, food provision). Like many sectors of the Italian economy, aquaculture has also slowed down due to the ongoing emergency and the consequent closure of business. In our study we provided a ‘snapshot’ of the socio-economic effects of the lockdown on the aquaculture sector in Italy, immediately following the adoption of the COVID-19 restrictions as they were perceived by the workers. Although it was surveyed for a short-time period, differences in perception have been detected both in relation to the type of aquaculture as well as to the geographic locations where farms were placed, partially reflecting the economic gaps already existing within the northern and the southern part of the country before the lockdown
    corecore