46 research outputs found

    An NSTA Position Statement: Science-Technology-Society: Science Education for the 1980s

    Get PDF
    Science and technology influence every aspect of our lives. They are central to our welfare as individuals and to the welfare of our society. All around us are examples of the importance of science and technology for production of food, shelter, clothing, medicines, transportation, and various sources of energy. There are an increasing number of science- and technology-related societal problems as well as increasing societal benefits. Science and technology are central to our personal and cultural welfare and to many societal problems. We must insure appropriate science education for all citizens

    SKYSURF-4: Panchromatic HST All-Sky Surface-Brightness Measurement Methods and Results

    Full text link
    The diffuse, unresolved sky provides most of the photons that the Hubble Space Telescope (HST) receives, yet remains poorly understood. HST Archival Legacy program SKYSURF aims to measure the 0.2-1.6 μ\mum sky surface brightness (sky-SB) from over 140,000 HST images. We describe a sky-SB measurement algorithm designed for SKYSURF that is able to recover the input sky-SB from simulated images to within 1% uncertainty. We present our sky-SB measurements estimated using this algorithm on the entire SKYSURF database. Comparing our sky-SB spectral energy distribution (SED) to measurements from the literature shows general agreements. Our SKYSURF SED also reveals a possible dependence on Sun angle, indicating either non-isotropic scattering of solar photons off interplanetary dust or an additional component to Zodiacal Light. Finally, we update Diffuse Light limits in the near-IR based on the methods from Carleton et al. (2022), with values of 0.009 MJy sr1^{-1} (22 nW m2^{-2} sr1^{-1}) at 1.25 μ\mum, 0.015 MJy sr1^{-1} (32 nW m2^{-2} sr1^{-1}) at 1.4 μ\mum, and 0.013 MJy sr1^{-1} (25 nW m2^{-2} sr1^{-1}) at 1.6 μ\mum. These estimates provide the most stringent all-sky constraints to date in this wavelength range. SKYSURF sky-SB measurements are made public on the official SKYSURF website and will be used to constrain Diffuse Light in future papers.Comment: Revised based on helpful comments from the reviewer, and accepted to AJ on April 12th, 2023. Main paper: 18 pages, 9 figures, 4 tables. Appendices: 16 pages, 10 figures, 1 table. Main results shown in Figure 7 and Table

    JWST NIRCam Photometry: A Study of Globular Clusters Surrounding Bright Elliptical Galaxy VV 191a at z=0.0513

    Full text link
    James Webb Space Telescope NIRCam images have revealed 443 globular cluster (GC) candidates around the z=0.0513z=0.0513 elliptical galaxy VV 191a. NIRCam broadband observations are made at 0.9-4.5 μ\mum using filters F090W, F150W, F356W, and F444W. Using photometry, the data is analyzed to present color-magnitude diagrams (CMDs) that suggest a fairly uniform population of GCs. Color histograms show a unimodal color distribution that is well fit by a single Gaussian, using color to primarily trace the metallicity. The findings show the sample's globular cluster luminosity function (GCLF) does not reach the turnover value and is, therefore, more luminous than what is typically expected, with an absolute AB magnitude, MF090W=8.70M_{F090W} = -8.70 mag, reaching within nearly one magnitude of the classical turnover value. We attribute this to the completeness in the sample. Models show that the mass estimate of the GCs detected tends to be more massive, reaching upward of 107M\simeq 10^7 M_{\odot}. However, the results show that current GC models do not quite align with the data. We find that the models appear to be bluer than the JWST data in the reddest (F356W-F444W) filters and redder than the data in the bluest (F090W-F150W) filters and may need to be revised to improve the modeling of near-IR colors of old, metal-poor stellar populations.Comment: 11 pages, 7 figure

    SKYSURF: Constraints on Zodiacal Light and Extragalactic Background Light through Panchromatic HST All-Sky Surface-Brightness Measurements: I. Survey Overview and Methods

    Full text link
    We give an overview and describe the rationale, methods, and testing of the Hubble Space Telescope (HST) Archival Legacy project "SKYSURF." SKYSURF uses HST's unique capability as an absolute photometer to measure the ~0.2-1.7 μ\mum sky surface brightness (SB) from 249,861 WFPC2, ACS, and WFC3 exposures in ~1400 independent HST fields. SKYSURF's panchromatic dataset is designed to constrain the discrete and diffuse UV to near-IR sky components: Zodiacal Light (ZL; inner Solar System), Kuiper Belt Objects (KBOs; outer Solar System), Diffuse Galactic Light (DGL), and the discrete plus diffuse Extragalactic Background Light (EBL). We outline SKYSURF's methods to: (1) measure sky-SB levels between its detected objects; (2) measure the integrated discrete EBL, most of which comes from AB\simeq17-22 mag galaxies; and (3) estimate how much diffuse light may exist in addition to the extrapolated discrete galaxy counts. Simulations of HST WFC3/IR images with known sky-values and gradients, realistic cosmic ray (CR) distributions, and star plus galaxy counts were processed with nine different algorithms to measure the "Lowest Estimated Sky-SB" (LES) in each image between the discrete objects. The best algorithms recover the inserted LES values within 0.2% when there are no image gradients, and within 0.2-0.4% when there are 5-10% gradients. SKYSURF requires non-standard re-processing of these HST images that includes restoring the lowest sky-level from each visit into each drizzled image. We provide a proof of concept of our methods from the WFC3/IR F125W images, where any residual diffuse light that HST sees in excess of the Kelsall et al. (1998) Zodiacal model prediction does not depend on the total object flux that each image contains. This enables us to present our first SKYSURF results on diffuse light in Carleton et al. (2022).Comment: Accepted to AJ; see accompanying paper Carleton et al. 2022: arXiv:2205.06347. Comments welcome

    ACMS: The Akamai Configuration Management System

    No full text
    increasingly large distributed systems to deploy increasingly complex and mission-critical applications. In order for these systems to achieve the ultimate goal of having similar easeof-use properties as centralized systems they must allow fast, reliable, and lightweight management and synchronization of their configuration state. This goal poses numerous technical challenges in a truly Internet-scale system, including varying degrees of network connectivity, inevitable machine failures, and the need to distribute information globally in a fast and reliable fashion. In this paper we discuss the design and implementation of a configuration management system for the Akamai Network. It allows reliable yet highly asynchronous delivery of configuration information, is significantly fault-tolerant, and can scale if necessary to hundreds of thousands of servers. The system is fully functional today providing configuration management to over 15,000 servers deployed in 1200+ different networks in 60+ countries.
    corecore