947 research outputs found

    ICDP workshop on the Lake Victoria Drilling Project (LVDP): scientific drilling of the world's largest tropical lake

    Get PDF
    Lake Victoria, which is bordered by Uganda, Tanzania, Kenya, and has a catchment that extends to Rwanda and Burundi, is home to the largest human population surrounding any lake in the world and provides critical resources across eastern Africa. Lake Victoria is also the world's largest tropical lake by surface area, but it is relatively shallow and without a major inlet, making it very sensitive to changes in climate, and especially hydroclimate. Furthermore, its size creates abundant habitats for aquatic fauna, including the iconic hyper-diverse cichlids, and serves as a major geographic barrier to terrestrial fauna across equatorial Africa. Given Lake Victoria's importance to the eastern African region, its sensitivity to climate, and its influences on terrestrial and aquatic faunal evolution and dispersal, it is vital to understand the connection between the lake and regional climate and how the lake size, shape, and depth have changed through its depositional history. This information can only be ascertained by collecting a complete archive of Lake Victoria's sedimentary record. To evaluate the Lake Victoria basin as a potential drilling target, ∼ 50 scientists from 10 countries met in Dar es Salaam, Tanzania, in July 2022 for the International Continental Scientific Drilling Program (ICDP)-sponsored Lake Victoria Drilling Project (LVDP) workshop. Discussions of the main scientific objectives for a future drilling project included (1) recovering the Pleistocene and Holocene sedimentary records of Lake Victoria that document the dynamic nature of the lake, including multiple lacustrine and paleosol sequences; (2) establishing the chronology of recovered sediments, including using extensive tephra fingerprinting and other techniques from deposits in the region; (3) reconstructing past climate, environment, lacustrine conditions, and aquatic fauna, using an integrated multi-proxy approach, combined with climate and hydrologic modeling; and (4) connecting new records with existing sedimentary snapshots and fossils exposed in deposits around the lake, tying archaeological, paleontological, sedimentological, tectonic, and volcanic findings to new drilling results. The LVDP provides an innovative way to address critical geological, paleontological, climatological, and evolutionary biological questions about Quaternary to modern landscapes and ecosystems in eastern Africa. Importantly, this project affords an excellent opportunity to help develop conservation and management strategies for regional responses to current and future changes in climate, land use, fisheries, and resiliency of at-risk communities in equatorial Africa.</p

    Hydrodynamic attraction of swimming microorganisms by surfaces

    Full text link
    Cells swimming in confined environments are attracted by surfaces. We measure the steady-state distribution of smooth-swimming bacteria (Escherichia coli) between two glass plates. In agreement with earlier studies, we find a strong increase of the cell concentration at the boundaries. We demonstrate theoretically that hydrodynamic interactions of the swimming cells with solid surfaces lead to their re-orientation in the direction parallel to the surfaces, as well as their attraction by the closest wall. A model is derived for the steady-state distribution of swimming cells, which compares favorably with our measurements. We exploit our data to estimate the flagellar propulsive force in swimming E. coli

    Magnetic Field-Induced Condensation of Triplons in Han Purple Pigment BaCuSi2_2O6_6

    Full text link
    Besides being an ancient pigment, BaCuSi2_2O6_6 is a quasi-2D magnetic insulator with a gapped spin dimer ground state. The application of strong magnetic fields closes this gap creating a gas of bosonic spin triplet excitations called triplons. The topology of the spin lattice makes BaCuSi2_2O6_6 an ideal candidate for studying the Bose-Einstein condensation of triplons as a function of the external magnetic field, which acts as a chemical potential. In agreement with quantum Monte Carlo numerical simulations, we observe a distinct lambda-anomaly in the specific heat together with a maximum in the magnetic susceptibility upon cooling down to liquid Helium temperatures.Comment: published on August 20, 200

    LGP2 plays a critical role in sensitizing mda-5 to activation by double-stranded RNA.

    Get PDF
    The DExD/H box RNA helicases retinoic acid-inducible gene-I (RIG-I) and melanoma differentiation associated gene-5 (mda-5) sense viral RNA in the cytoplasm of infected cells and activate signal transduction pathways that trigger the production of type I interferons (IFNs). Laboratory of genetics and physiology 2 (LGP2) is thought to influence IFN production by regulating the activity of RIG-I and mda-5, although its mechanism of action is not known and its function is controversial. Here we show that expression of LGP2 potentiates IFN induction by polyinosinic-polycytidylic acid [poly(I:C)], commonly used as a synthetic mimic of viral dsRNA, and that this is particularly significant at limited levels of the inducer. The observed enhancement is mediated through co-operation with mda-5, which depends upon LGP2 for maximal activation in response to poly(I:C). This co-operation is dependent upon dsRNA binding by LGP2, and the presence of helicase domain IV, both of which are required for LGP2 to interact with mda-5. In contrast, although RIG-I can also be activated by poly(I:C), LGP2 does not have the ability to enhance IFN induction by RIG-I, and instead acts as an inhibitor of RIG-I-dependent poly(I:C) signaling. Thus the level of LGP2 expression is a critical factor in determining the cellular sensitivity to induction by dsRNA, and this may be important for rapid activation of the IFN response at early times post-infection when the levels of inducer are low

    NF-κB-mediated effects on behavior and cartilage pathology in a non-invasive loading model of post-traumatic osteoarthritis

    Get PDF
    OBJECTIVE: This study aimed to examine the temporal activation of NF-κB and its relationship to the development of pain-related sensitivity and behavioral changes in a non-invasive murine knee loading model of PTOA. METHOD: Following knee injury NF-κB activity was assessed longitudinally via in vivo imaging in FVB. Cg-Tg (HIV-EGFP,luc)8Tsb/J mice. Measures of pain-related sensitivity and behavior were also assessed longitudinally for 16 weeks. Additionally, we antagonized NF-κB signaling via intra-articular delivery of an IκB kinase two antagonist to understand how local NF-κB inhibition might alter disease progression. RESULTS: Following joint injury NF-κB signaling within the knee joint was transiently increased and peaked on day 3 with an estimated 1.35 p/s/cm CONCLUSION: These findings underscore the development of behavioral changes in this non-invasive loading model of PTOA and their relationships to NF-κB activation and pathology. They also highlight the potential chondroprotective effects of NF-κB inhibition shortly following joint injury despite limitations in preventing the long-term development of joint degeneration in this model of PTOA

    Just urban transitions: Toward a research agenda

    Full text link
    While there are excellent policy and academic foundations for thinking about and making sense of urban climate action and questions of justice and climate change independently, there is less work that considers their intersection. The nature and dynamics of, and requirements for, a just urban transition (JUT)—the fusion of climate action and justice concerns at the urban scale—are not well understood. In this review article we seek to rectify this by first examining the different strains of justice scholarship (environmental, energy, climate, urban) that are informing and should inform JUT. We then turn to a discussion of just transitions in general, tracing the history of the term and current understandings in the literature. These two explorations provide a foundation for considering both scholarly and policy‐relevant JUT agendas. We identify what is still needed to know in order to recognize, study, and foster JUT.This article is categorized under:The Carbon Economy and Climate Mitigation > Benefits of MitigationClimate, Nature, and Ethics > Climate Change and Global JusticeJust urban transitions research and policy agendas center alternative urban futures: cities where the distribution of environmental risks and benefits do not disproportionately burden marginalized groups; where decision‐making is transparent, engaged, and democratic; and where policies seek to remedy structural inequalities and prior injustices.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/154981/1/wcc640_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154981/2/wcc640.pd

    From Teamchef Arminius to Hermann Junior: glocalised discourse about a national foundation myth

    Get PDF
    If for much of the nineteenth and twentieth centuries, the ‘Battle of the Teutoburg Forest’, fought in 9 CE between Roman armies and Germanic tribes, was predominantly a reference point for nationalist and chauvinist discourses in Germany, the first decade of the twenty-first century has seen attempts to link public remembrance with local/regional identities on the one hand and international/intercultural contact on the other. In the run up to and during the ‘anniversary year’ of 2009, German media, sports institutions and various other official institutions articulating tourist, economic and political interests attempted to create a new ‘glocalised’ version of the public memory of the Teutoburg battle. Combining methods of Cognitive Linguistics and Critical Discourse Analysis, the paper analyses the narrative and argumentative topoi employed in this re-orientation of public memory, with a special emphasis on hybrid, post-national identity-construction. Das zweitausendjährige Gedenkjahr der „Schlacht im Teutoburger Wald“ im Jahr 2009 bot eine günstige Gelegenheit, die bis in die zweite Hälfte des 20. Jahrhunderts dominante Tradition nationalistisch–chauvinistischer Deutungen des Sieges von germanischen Stämmen über drei römische Legionen zu korrigieren und zu überwinden. Der Aufsatz analysiert mit Hilfe diskurslinguistischer Methoden die Anstrengungen regionaler Institutionen und Medien, die nationale Vereinnahmung des historischen Gedenkens kritisch zu thematisieren sowie neue, zum eine lokal situierte, zum andern international orientierte Identifikationsangebote anzubieten. Die Analyse zeigt, dass solche „de-nationalisierten“ Identifikationsangebote zwar teilweise auch früher verwendet wurden, aber heutzutage rekontextualisiert und auf innovative Weise in den Vordergrund gestellt werden

    Reconstructing the three-dimensional GABAergic microcircuit of the striatum

    Get PDF
    A system's wiring constrains its dynamics, yet modelling of neural structures often overlooks the specific networks formed by their neurons. We developed an approach for constructing anatomically realistic networks and reconstructed the GABAergic microcircuit formed by the medium spiny neurons (MSNs) and fast-spiking interneurons (FSIs) of the adult rat striatum. We grew dendrite and axon models for these neurons and extracted probabilities for the presence of these neurites as a function of distance from the soma. From these, we found the probabilities of intersection between the neurites of two neurons given their inter-somatic distance, and used these to construct three-dimensional striatal networks. The MSN dendrite models predicted that half of all dendritic spines are within 100 mu m of the soma. The constructed networks predict distributions of gap junctions between FSI dendrites, synaptic contacts between MSNs, and synaptic inputs from FSIs to MSNs that are consistent with current estimates. The models predict that to achieve this, FSIs should be at most 1% of the striatal population. They also show that the striatum is sparsely connected: FSI-MSN and MSN-MSN contacts respectively form 7% and 1.7% of all possible connections. The models predict two striking network properties: the dominant GABAergic input to a MSN arises from neurons with somas at the edge of its dendritic field; and FSIs are interconnected on two different spatial scales: locally by gap junctions and distally by synapses. We show that both properties influence striatal dynamics: the most potent inhibition of a MSN arises from a region of striatum at the edge of its dendritic field; and the combination of local gap junction and distal synaptic networks between FSIs sets a robust input-output regime for the MSN population. Our models thus intimately link striatal micro-anatomy to its dynamics, providing a biologically grounded platform for further study

    Long-Term Functionality of Rural Water Services in Developing Countries: A System Dynamics Approach to Understanding the Dynamic Interaction of Causal Factors

    Full text link
    Research has shown that sustainability of rural water infrastructure in developing countries is largely affected by the dynamic and systemic interactions of technical, social, financial, institutional, and environmental factors that can lead to premature water system failure. This research employs systems dynamic modeling, which uses feedback mechanisms to understand how these factors interact dynamically to influence long-term rural water system functionality. To do this, the research first identified and aggregated key factors from literature, then asked water sector experts to indicate the polarity and strength between factors through Delphi and cross impact survey questionnaires, and finally used system dynamics modeling to identify and prioritize feedback mechanisms. The resulting model identified 101 feedback mechanisms that were dominated primarily by three and four-factor loops that contained some combination of the factors: Water System Functionality, Community, Financial, Government, Management, and Technology. These feedback mechanisms were then scored and prioritized, with the most dominant feedback mechanism identified as Water System Functionality – Community – Finance – Management. This research offers insight into the dynamic interaction of factors impacting sustainability of rural water infrastructure through the identification of these feedback mechanisms and makes a compelling case for future research to longitudinally investigate the interaction of these factors in various contexts
    corecore