research

Hydrodynamic attraction of swimming microorganisms by surfaces

Abstract

Cells swimming in confined environments are attracted by surfaces. We measure the steady-state distribution of smooth-swimming bacteria (Escherichia coli) between two glass plates. In agreement with earlier studies, we find a strong increase of the cell concentration at the boundaries. We demonstrate theoretically that hydrodynamic interactions of the swimming cells with solid surfaces lead to their re-orientation in the direction parallel to the surfaces, as well as their attraction by the closest wall. A model is derived for the steady-state distribution of swimming cells, which compares favorably with our measurements. We exploit our data to estimate the flagellar propulsive force in swimming E. coli

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 01/04/2019