1,469 research outputs found
Evolution of optogenetic microdevices
Implementation of optogenetic techniques is a recent addition to the neuroscientists\u27 preclinical research arsenal, helping to expose the intricate connectivity of the brain and allowing for on-demand direct modulation of specific neural pathways. Developing an optogenetic system requires thorough investigation of the optogenetic technique and of previously fabricated devices, which this review accommodates. Many experiments utilize bench-top systems that are bulky, expensive, and necessitate tethering to the animal. However, these bench-top systems can make use of power-demanding technologies, such as concurrent electrical recording. Newer portable microdevices and implantable systems carried by freely moving animals are being fabricated that take advantage of wireless energy harvesting to power a system and allow for natural movements that are vital for behavioral testing and analysis. An investigation of the evolution of tethered, portable, and implantable optogenetic microdevices is presented, and an analysis of benefits and detriments of each system, including optical power output, device dimensions, electrode width, and weight is given. Opsins, light sources, and optical fiber coupling are also discussed to optimize device parameters and maximize efficiency from the light source to the fiber, respectively. These attributes are important considerations when designing and developing improved optogenetic microdevices
Magnon Exchange Mechanism of Ferromagnetic Superconductivity
The magnon exchange mechanism of ferromagnetic superconductivity
(FM-superconductivity) was developed to explain in a natural way the fact that
the superconductivity in , and is confined to the
ferromagnetic phase.The order parameter is a spin anti-parallel component of a
spin-1 triplet with zero spin projection. The transverse spin fluctuations are
pair forming and the longitudinal ones are pair breaking. In the present paper,
a superconducting solution, based on the magnon exchange mechanism, is obtained
which closely matches the experiments with and . The onset of
superconductivity leads to the appearance of complicated Fermi surfaces in the
spin up and spin down momentum distribution functions. Each of them consist of
two pieces, but they are simple-connected and can be made very small by varying
the microscopic parameters. As a result, it is obtained that the specific heat
depends on the temperature linearly, at low temperature, and the coefficient
is smaller in the superconducting phase than in the
ferromagnetic one. The absence of a quantum transition from ferromagnetism to
ferromagnetic superconductivity in a weak ferromagnets and is
explained accounting for the contribution of magnon self-interaction to the
spin fluctuations' parameters. It is shown that in the presence of an external
magnetic field the system undergoes a first order quantum phase transition.Comment: 9 pages, 7 figures, accepted for publication in Phys.Rev.
Breakup of a Stoner model for the 2D ferromagnetic quantum critical point
Re-interpretation of the results by [A. V. Chubukov et. al., Phys. Rev. Lett.
90, 077002 (2003)] leads to the conclusion that ferromagnetic quantum critical
point (FQCP) cannot be described by a Stoner model because of a strong
interplay between the paramagnetic fluctuations and the Cooper channel, at
least in two dimensions.Comment: 5 pages, 2 EPS figures, RevTeX
Difference Imaging of Lensed Quasar Candidates in the SDSS Supernova Survey Region
Difference imaging provides a new way to discover gravitationally lensed
quasars because few non-lensed sources will show spatially extended, time
variable flux. We test the method on lens candidates in the Sloan Digital Sky
Survey (SDSS) Supernova Survey region from the SDSS Quasar Lens Search (SQLS)
and their surrounding fields. Starting from 20768 sources, including 49 SDSS
quasars and 36 candidate lenses/lensed images, we find that 21 sources
including 15 SDSS QSOs and 7 candidate lenses/lensed images are non-periodic
variable sources. We can measure the spatial structure of the variable flux for
18 of these sources and identify only one as a non-point source. This source
does not display the compelling spatial structure of the variable flux of known
lensed quasars, so we reject it as a lens candidate. None of the lens
candidates from the SQLS survive our cuts. Given our effective survey area of
order 0.71 square degrees, this indicates a false positive rate of order one
per square degree for themethod. The fraction of quasars not found to be
variable and the false positive rate should both fall if we analyze the full,
later data releases for the SDSS fields. While application of the method to the
SDSS is limited by the resolution, depth, and sampling of the survey, several
future surveys such as Pan-STARRS, LSST, and SNAP will avoid these limitations.Comment: Submitted to ApJ, 24 pages, 5 figure
Recommended from our members
Continuum damping of low-n toroidicity-induced shear Alfven eigenmodes
The effect of resonant continuum damping is investigated for the low-mode-number, toroidicity-induced, global shear Alfven eigenmodes, which can be self-excited by energetic circulating alpha particles in an ignited tokamak plasma. Resonant interaction with the shear Alfven continuum is possible for these eigenmodes, especially near the plasma periphery, leading to significant dissipation, which is typically larger than direct bulk plasma dissipation rates. Two perturbation methods are developed for obtaining the Alfven resonance damping rate from the ideal fluid zeroth-order shear Alfven eigenvalue and eigenfunction. In both methods the real part of the frequency is estimated to zeroth order, and the imaginary part, which includes the damping rate, is then obtained by perturbation theory. One method, which is applicable when the eigenfunction is nearly real, can readily be incorporated into general MHD codes. In the second method, the zeroth-order eigenfunctions may be complex; however, the application of this method to general MHD codes needs more detailed development. Also, an analytical estimate is found for the next-order real frequency shift of the fluid global Alfven mode. Analytical and numerical studies of this continuum damping effect indicate that it can substantially reduce the alpha particle-induced growth rate. Thus, either it is possible to prevent instability, or if unstable, to use the Alfven resonance damping to estimate the saturation amplitude level predicted from quasilinear theory. 44 refs., 13 figs., 1 tab
The Optical, Infrared and Radio Properties of Extragalactic Sources Observed by SDSS, 2MASS and FIRST Surveys
We positionally match sources observed by the Sloan Digital Sky Survey
(SDSS), the Two Micron All Sky Survey (2MASS), and the Faint Images of the
Radio Sky at Twenty-cm (FIRST) survey. Practically all 2MASS sources are
matched to an SDSS source within 2 arcsec; ~11% of them are optically resolved
galaxies and the rest are dominated by stars. About 1/3 of FIRST sources are
matched to an SDSS source within 2 arcsec; ~80% of these are galaxies and the
rest are dominated by quasars. Based on these results, we project that by the
completion of these surveys the matched samples will include about 10^7 stars
and 10^6 galaxies observed by both SDSS and 2MASS, and about 250,000 galaxies
and 50,000 quasars observed by both SDSS and FIRST. Here we present a
preliminary analysis of the optical, infrared and radio properties for the
extragalactic sources from the matched samples. In particular, we find that the
fraction of quasars with stellar colors missed by the SDSS spectroscopic survey
is probably not larger than ~10%, and that the optical colors of radio-loud
quasars are ~0.05 mag. redder (with 4-sigma significance) than the colors of
radio-quiet quasars.Comment: 10 pages, 6 color figures, presented at IAU Colloquium 184. AGN
Survey
Omega-6 to omega-3 polyunsaturated fatty acid ratio and subsequent mood disorders in young people with at-risk mental states: a 7-year longitudinal study
While cross-sectional studies suggest that patients with mood disorders have a higher ratio of omega-6 to omega-3 polyunsaturated fatty acids (PUFAs) and lower levels of omega-3 PUFAs, it is unknown if a high n-6/3 ratio indicates vulnerability for depression. We tested this hypothesis in a 7-year follow-up study of young individuals with an ultra-high risk (UHR) phenotype. We conducted a secondary analysis of the Vienna omega-3 study, a longitudinal study of omega-3 PUFAs in individuals at UHR for psychosis (n = 69). Levels of n-6 and n-3 PUFAs were measured in the phosphatidylethanolamine fraction of erythrocyte membranes at intake into the study. Mood disorder diagnosis was ascertained with the Structured Clinical Interview for DSM-IV-TR and confirmed by review of medical records and interviews of caregivers. A higher n-6/3 PUFA ratio at baseline predicted mood disorders in UHR individuals over a 7-year (median) follow-up (odds ratio = 1.89, 95% CI = 1.075-3.338, P = 0.03). This association remained significant after adjustment for age, gender, smoking, severity of depressive symptoms at baseline and n-3 supplementation. Consistent results were obtained for individual PUFAs, including lower levels of eicosapentaenoic acid and docosahexaenoic acid. The predictive capacity of these findings was specific to mood disorders as no associations were found for any other psychiatric disorder. To our knowledge, our data provide the first prospective evidence that the n-6/3 PUFA ratio is associated with an increased risk for mood disorders in young people exhibiting an UHR phenotype. These findings may have important implications for treatment and risk stratification beyond clinical characteristics
- …