research

Magnon Exchange Mechanism of Ferromagnetic Superconductivity

Abstract

The magnon exchange mechanism of ferromagnetic superconductivity (FM-superconductivity) was developed to explain in a natural way the fact that the superconductivity in UGe2UGe_2, ZrZn2ZrZn_2 and URhGeURhGe is confined to the ferromagnetic phase.The order parameter is a spin anti-parallel component of a spin-1 triplet with zero spin projection. The transverse spin fluctuations are pair forming and the longitudinal ones are pair breaking. In the present paper, a superconducting solution, based on the magnon exchange mechanism, is obtained which closely matches the experiments with ZrZn2ZrZn_2 and URhGeURhGe. The onset of superconductivity leads to the appearance of complicated Fermi surfaces in the spin up and spin down momentum distribution functions. Each of them consist of two pieces, but they are simple-connected and can be made very small by varying the microscopic parameters. As a result, it is obtained that the specific heat depends on the temperature linearly, at low temperature, and the coefficient γ=CT\gamma=\frac {C}{T} is smaller in the superconducting phase than in the ferromagnetic one. The absence of a quantum transition from ferromagnetism to ferromagnetic superconductivity in a weak ferromagnets ZrZn2ZrZn_2 and URhGeURhGe is explained accounting for the contribution of magnon self-interaction to the spin fluctuations' parameters. It is shown that in the presence of an external magnetic field the system undergoes a first order quantum phase transition.Comment: 9 pages, 7 figures, accepted for publication in Phys.Rev.

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 02/01/2020