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Abstract

The effect of resonant continuum damping is investigated for the low-mode-number,

toroidicity-induced, global shear Alfv4n eigenmodes, which can be self-excited by en- %

ergetic circulating alpha particles in an ignited tokamak plasma. Resonant interaction

with the shear Alfv4n continuum is possible for these eigenmodes, especially near the

plasma periphery, leading to significant dissipation, which is typically larger than direct

bulk plasma dissipation rates. Two perturbation methods are developed for obtain-

ing the Alfv4n resonance damping rate from the ideal fluid zeroth-order shear Alfv4n

eigenvalue and eigenfunction. In both methods the real part of the frequency is es-

timated to zeroth order, and the imaginary part, which includes the damping rate,

is then obtained by perturbation theory. One method, which is applicable when the

eigenfunction is nearly real, can readily be incorporated into general IVIHD codes. In

" the second method, the zeroth-order eigenfunctions may be complex_ however, the ap-

plication of this method to general MHD codes needs more detailed development. Also,

an analytical estimate is found for the next-order real frequency shift of the fluid global

Alfven mode. Analytical and numerical studies of this continuum damping effect in-
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dicate th_.t it can substantially reduce the alpha particle-induced growth rate. Thus,

either it is possible to prevent instability or, if unstable, to use the Alfven resonance

damping to estimate the saturation amplitude level predicted from quasilinear theory.
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I. Introduction

Of considerable attention in the last few years has been the study of the effect of high-

. energy alpha particles on the stability of shear Alfv6n waves in ignited tokamak plasmas. In

particular, it has been shown that a global-type low-mode-number shear Alfv6n mode that is

" created by toroidicitv 1 can be strongly destabilized by fusion-product alpha particles. 2'3 (For

short, we shall refer to this toroidicity-induced shear Alfven eigenmode as the TAE mode.)

Marginal stability thresholds in the alpha particle beta value (with bulk plasma Landau

damping taken into account) and growth rates above threshold have been calculated 4-9 for

typicai reactor parameters, with the threshold beta values found to be fairly low. Moreover,

guiding-center simulations _° have indicated that finite-amplitude TAE waves may cause loss

of containment of fast alpha particles, which would be detrimental to the self-sustainment of

a burning plasma by means of alpha particle heating. Apropos of this issue, the saturation

amplitude level for the TAE mode has been studied 11 with a quasilinear profile broadening

theory based on wave trapping. Experimentally, it may be possible to simulate the TAE mode

with the use of highly energetic circulating ions injected bv tangentially-directed neutral

beams, and some recently reported results 12-_4 seem to indicate that this mode has been

observed.

In the present paper, we extend the linear stability studies of the low-mode-number TAE

mode bv investigating an additional physical mechanism, nameh', the stabilizing effect of

resonance wave damping that is caused by interaction of the TAE mode with the shear Alfven

continuum. Such continuum resonance is likely to occur near the edge of the plasma where

the plasma density decreases and the safety factor increases. We find that the continuum

" resonance leads to dissipation that can be more important than the bulk Landau damping

from the toroidal plasma ion and electron species. Furthermore, we find that this continuum

damping may be able to reduce the alpha particle-induced growth rate significantly and thus

have an ameliorating effect on the TAE instability.
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Our theoretical procedures for obtaining the continuum damping rate are as follows. In

one method, the variational nature of the governing equations is used to obtain the dissipative

contributions. We find that the continuum damping rate can be predicted from the ideal

MHD equations if we use the prescription of causality; this is the same prescription that

is used in the derivation of Landau damping to handle wave-particle resonance in velocity

space, although here we apply it to the shear Alfven resonance in coordinate space. The

application of causality to analyze spatial continuum resonance in the ideal MHD equations

has been employed before, for specific equilibrium profiles, to derive the power absorption

rate due to wave heating. 1S-21 In our TAE problem, we exploit the fact that the continuum

dissipation rate is generally small compared to the oscillation frequency of the basic TAE

mode. Then, as long as it can be treated as a perturbation, the continuum damping rate

can be obtained in terms of the zeroth-order TAE eigenfunction and its real eigenfrequency.

The variational method depends on the assumption that the eigenfunction is nearly real.
I

However, if continuum resonances occur at several spatial points, this assumption may fail.

. To treat this latter case we have developed an alternate perturbation method to estimate

damping, where the zeroth-order eigenfunction may be complex. Recently, a related theory

has been developed for continuum damping of the high-mode-number version of the TAE

mode. 22

In Sec. II, we briefly review the physics of the TAE mode and how it is destabilized bv

alpha particles. The TAE coupled wave equation will be derived in the large-aspect-ratio

limit in Sec. III. A general formalism for obtaining the damping rate due to continuum

resonance will be described in Sec. IV. Explicit formulae for the case of two-mode coupling

and for the case of three-mode coupling are given in Sec. V, along with an analytic estimate

for the frequency shift of the MHD global Alfven wave. Numerical solutions are presented

in Sec. VI and compared with the analytical estimates. Section VII contains comments and

conclusions concerning this work. Several appendices are provided, including a derivation for



the kinetic response of the alpha particles and an analytical estimate for the TAE growth rate

induced by the alpha particles, as well as a description of an alternate method of obtaining

the damping rate when several continuum singularities exist for real frequency.

II. Review of the TAE Instability

In a tokamak plasma there are two types of shear Alfv6n waves that are global in nature,

with extended radial structure. Both have low mode numbers, and the derivative along a

magnetic field line of their respective wave functions does not vanish on any characteristic

flux surface. The first type. called the "global Alfv6n eigenmode." is a regular wave (due

to the inclusion of the Hall effect) with a discrete frequency that lies just below the min-

imum of the Alfvdn continuum. 23-26 Early theoretical analysis of this mode in cylindrical

geometry showed that transit wave-particle resonant interaction with super-Alfvdnic alpha

particles could destabilize it, although somewhat weakly. 2: Subsequent analysis in toroidal

geometry found that finite toroidicitv causes coupling among modes with different poloidal

mode numbers, which, when Landau damping is accounted for, has the tendency to lead to

complete stabilization of this mode. 5'2s

The other type of global shear Alfvdn wave exists only in toroidal geometry. Its discrete

frequency lies within "gaps" in the shear Alfvdn continuum that are created by toroidal

coupling effects. 29-a2 The existence of this wave. the TAE mode, was originally shown in the

ideal MHD limit, without any alpha particles. 1 In a burning tokamak plasma, this TAE mode

can be strongly destabilized by circulating, highly energetic alpha particles through inverse

2 9
Landau wave-particle resonant interaction. - The high-mode-number version of this mode

has also been examined, a3'34 In the present work, we confine our attention to the low-mode-

number eigenmode, whose radially global mode structure can be diagnosed experimentally.

" The "gaps" in the toroidal Alfven continuum are caused by toroidicity-induced mode

coupling, as illustrated in Fig. l(a). This figure shows the toroidal shear Alfv6.n continuum



(solid curves), as well as the cylindrical continua (dashed curves) for the poloidal harmonics

with mode numbers rn = 1 and rn = 9 where the toroidal mode number is taken to be n = 1

The perturbed wavefunction is assumed to vary as exp[i(-mO + n_ -wt)]. For simplicity, in

Fig. 1(a) the density profile is taken to be constant, and the safety factor profile is quadratic;

i.e., q(r) = 1 + (r/a) 2, with q = 2 at the edge of the plasma r = a. The cylindrical

continua are given by the frequencies ,_ = a_(r) that satisfy the shear Alfv6n condition

,_2 = k_m.n(r) v_(r). Here kll_., = [-rn/q(r)+ n]/R is the parallel wavenumber, with q(r)

the safety factor, n and ra the toroidal and poloidal mode numbers, R the major radius, and

vA(r) = B(47rNiM_) -_/_ the Alfven speed. Due to the tokamak axisymmetry, the toroidal

mode number n is a good "quantum" number, and we will henceforth suppress this index

on kll and on the wavefunction. However, the poloidal mode numbers are no longer good

"quantum" numbers in tokamak geometry, due to toroidicity-induced coupling. In particular,

at the radial location r = rg where two cylindrical continua cross; i.e., kllm -- -kllm+l, the

" small toroidicity effects resolve the degeneracy between the two cylindrical continua, and a

"gap" appears. For the case shown in Fig. l(a), viz., n = 1 and rn = 1 and 2, this crossing
q

point occurs where q = 1.5. In the general case, if the cylindrical-geometry Alfv6n continua

corresponding to modes m and rn + 1 (for toroidal mode number n) intersect, this occurs

where q = (m + 1/2)/n. The magnitude of the width of the gap, 5_,,. is on the order of the

inverse aspect ratio a/R.

The continuum Alfven modes correspond to the excitation of shear Alfv6n waves on a

given flux surface where the mode frequency is resonant, viz., where a,,2 = k_m(r) v._(r). From

causality arguments one can show that such resonance leads to wave absorption. However,

frequencies excited within the spectral gaps, are not resonant with the continuum and hence

will not damp in the gap region. This allows a discrete eigenfrequency of the toroidicity-

induced Alfven eigenmode (TAE) to be established.

The TAE mode structure that corresponds to the situation illustrated in Fig. l(a) is



shown in Fig. l(b) for a/R = 0.25. Its eigenfrequency wo = 0.93[kllVAlq=l.5 lies within the

continuum gap of Fig. l(a). Note that the mode structure has a sharp transition for the

rn = 1 and m = 2 components at the gap location.

" The destabilizing effects of alpha particles on the TAE modes have been studied per-

turbatively. To a good approximation since the beta value of the alpha particles of small
t

(fl_ << _), one can assume that the imaginary part of the frequency is small compared to the

real part when the inverse Landau transit resonance contribution of the fast alpha particles

is included. The growth rate can then be obtained from the quadratic form for the coupled

equations, evaluated with the MHD eigenfunction and eigenfrequency for the TAE mode.

More detailed discussions of this procedure and results for the alpha particle-induced growth

rate may be found in Refs. 2-9 and in Appendix A of the present paper. This appendix

includes, with more general derivation, an additional kinetic response due to the finite al-

pha particle banana width in the equilibrium distribution function, as was also described in

Ref. 11.

Actually, the features of the shear Alfv6n spectrum in toroidal geometry are somewhat 1I

more complicated than what has been described in Fig. 1. Much of the initial work on

TAE instability with alpha particles was limited to simple cases for which the value of the

safety factor at the plasma edge was specified to be q(a) _ 2, as in Fig. I, and for which a

constant density profile was assumed. For a radially decreasing density profile, the AlfvSn

speed is increased, especially near the plasma edge. lt is then possible for the TAE eigenmode

frequency w0 to intersect with the shear Alfven continuum at the radial location 'cs where the

continuum resonance condition _02 = k_m(rs)VA(rS)is satisfied. Figure 9 illustrates such a

case. In this figure, q(a) = 2.3 and the density is constant out to r/a = 0.9 and then decreases
lm

linearly to zero at the edge. Continuum resonance occurs near the plasma periphery. It is

- known from earlier theoretical studies 16-2° of Alfv6n wave heating that continuum resonance

leads to wave damping. Resonance can also occur due to the radial variation of the safety



factor within the plasma.

Furthermore, as the value of q(a) increases, more than a single gap can occur in the

toroidal spectrum. Figure 3 shows the case for which q(a) = 3. Coupling between the

m - 1 and m = 2 modes occurs in the region where q = 1.5, and coupling between the

m = 2 and m = 3 modes occurs in the region where q = 2.5. For the case shown in Fig. 3,

the gaps at q - 1.5 and 2.5 approximately "line up," and the eigenmode structure and

resonant dissipation are more complicated. When the density and safety factor profiles lead

to multiple gaps that do not line up, the TAE mode that is established in the lowest-order

gap (i.e., with the lowest frequency and located nearest the magnetic axis) can interact with

the Alfven continuum at interior radial locations which also leads to significant damping.

The details concerning the nature of the TAE mode and the dissipative effect of reso-

nant i_teraction with the toroidal shear Alfven continuum will be explained in the following

sections of this paper. In the next several sections, the appropriate system of coupled eigen-

mode equations will be derived, and the wave damping that is caused by the resonance of

the TAE mode with the shear Alfven continuum will be calculated. The casual reader may

wish to skip directly to the description of the numerical results (Sec. VI) and the concluding

discussion (Sec. VII).

III. Eigenmode Equations in the Large Aspect Ratio
Limit

The governing equations for shear Alfven waves have been previously derived in cylindrical

geometry. 35-37 Later work included the kinetic effects of alpha particles on shear Alfven wave

stability. 2r'3s'39 The corresponding equations have also been derived in toroidal geometry,

both in the large-aspect-ratio limit for use with model profiles 2'3 and also in general geometry

for use with numerically generated equilibria. 1 Since the limit of large aspect ratio toroidal

geometry preserves all the essential features of the TAE mode, while at the same time



facilitates a clear understanding of the important physics mechanisms, we will adopt that

approach in the present work. The previous large-aspect ratio derivation of the eigenmode

equations 2,a was restricted to the case of concentric circular flux surfaces and retained only

" the toroidal coupling that enters through the frequency-dependent ion polarization inertial

term. Here we allow non-concentric flux surfaces and include also the toroidal coupling in

the magnetic field line-bending term.

A. Low-Beta Shear Alfven Wave Equation

The basic equations from which we begin our derivation of the shear Alfv6n eigenmode

equations are the following: (i) the condition for charge neutrality,

V.J =0 (1)

where J is the current, given by Amp6re's law (with the neglect of the displacement current)

as 4_J/c = V x B; (ii) the momentum balance equation, ,

dv 1
' --=-(J xB)-V.P (2)._,, Mi dt c

where v is the macroscopic plasma velocitv and where the total pressure P = pcl + P_

results from the isotropic core plasma pressure pc and the possibly anisotropic alpha-particle

pressure P_" and (iii) the drift kinetic equation,

Of e E) Of& + (vllb + vc + VD)" Vf + _ (vii Ell + VD" = 0 (3)

which describes the kinetic behavior of the highly energetic alpha particle population, as

well as the Landau damping due to the plasma ions and electrons. In Eq. (3), f is the

" distribution function for the respective species; e and M are the particle charge and mass:

VE = c(E x B)/B 2 is the electric field drift velocity; and VD = f) x (I_VB + v_.)/wc + v_f)b.

Vf)/_oc is the magnetic field gradient and curvature drift velocity, with b = B/B a unit

vector along the magnetic field direction, # = v[/2B the magnetic moment per unit mass,
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g = v_/2 + #B the particle energy per unit mass, tc = (b. Xr)f) the field line curvature, and

,_c = eB/Mc the gyrofrequency.

We now linearize the field variables as J = Jo+ *J, B = Bo +6B, E = 6E, and

v = Ev, where the subscript designates the steady-state equilibrium quantities, with small

perturbations IEgl/IBol <<1, etc. The density perturbation may be ignored since we employ

charge neutrality, and equilibrium electrostatic potential effects are neglected. Perturbed

quantities will be taken to vary in time as exp(-ia_t). The electric field and the magnetic

field may be represented in terms of the scalar and vector pot,entials _ and A as

1 0
6E = -V6¢----6A, 6B = V' X 6A (4)

c at

For the shear Alfven problem, the low-beta approximation is valid, and in this limit we may
A

take _A _ 6Allb, set 6Bll "_ 0 since 6BIi is related to the high-frequency cornpressional Alfven

branch, and drop terms involving the equilibrium pressure. Also, since the TAE mode is

essentially an MHD wave, we may set 6Eli = 0 and thus obtain the relationship

. iuEAll=CD.V6_. (5)

We also assume that the fluid velocity 6v is mainly given by the perturbed E x B motion:

6v -_6vE= c(6E×B)B2 (6)

Henceforth, except where required to avoid confusion. Lhe subscript on equilibrium quantities

will be dropped.

Using Eq. (2) to obtain the perpendicular perturbed current 6Ji and setting B .*B = 0,

we can rewrite Eq. (1) in the following form:

(B.V) -_ -i_cV. B2 +(6B±.V) +cV. _-_x(Xr.6P) =0. "

(7)

With the use of the expression VD = (Vll/Wc)_7 x (bVll), where the spatial gradient Xr is here

understood to operate with C and # held fixed, we find the following equation, valid in the

10



limit of low beta and large aspect ratio (see Appendix A):

cV. _ x (v. 6P) -__ _ d_v_. V_f, (8)3

. where _s indicates a sum over species. Equation (8) permits the evaluation of the last term

in Eq. (7) by means of the solution of the drift kinetic equation, Eq. (3). Now, with the use

" of Eqs. (6) and (8), we can rewrite Eq. (7) as

\ -/}_ +(SB±.V) + 4--'_- _ Va. 5O +_, e davvD.VSf = 0. (9)

The form of Eq. (9) is nearly identical to that of the shear Alfven equation derived by

Rosenbluth and Rutherford 2r in their study of fast particle destabilization of kinetic Alfven

waves, apart from terms involving gradients acting on the equilibrium magnetic field strength

B, which were ignored in their cylindrical treatment.

Now examine the various individual terms in Eq. (9). For 5A = 8Aiib, we can express

the parallel perturbed current, which appears in the first term of Eq. (9), as
f,

4r, (B._J)=-V. B2V± +--B--- 47rVV.P+ B2 + mjllC C
J

(10)

Note that in Eq. (10) all the derivatives acting on the perturbed field quantity are contained

in the first term. Also. the second and third terms are is negligible in the low-beta limit, and

the fourth term is dropped, being of order of the square of the inverse aspect ratio. Next we

find that the perpendicular perturbed magnetic field, which appears in the second term of

Eq. (9), can be expressed as

B2 (11)

where the second term is negligible in the low-beta limit. Next, recall that the equilibrium

parallel current (also known as the Pfirsch-Schlfiter, or return, current) in an axisymmetric

" toroidal system, which appears in the third term in Eq. (9), is given by

(,)]J_= 7 R_v _zv_ (_2)

11



where I = RBT is a function only of the poloidal flux _ in the lo_:;-beta limit, with BT

the toroidal magnetic field and R the major radius (measured from the axis of toroidal

symmetry). The a.pproximation in Eq. (12) again follows froln the assumption of low beta.

The procedure for obtaining the perturbed distribution function, which appears in the last

term of Eq. (9), from the drift kinetic equation, Eq. (3), is described in Appendix A.

Introducing Eqs. (10)-(12) into Eq. (9), we obtain the eigenmode equation

-V. ..--%VA V±6¢ + \_ _ e d3vvD . V6f = O . (13)

Except for the approximation of low beta. Eq. (13) describes shear Alfv6n waves in general

axisvmmetric toroidal geometry.

It is convenient to construct a quadratic form from Eq. (13), as follows. Multiply Eq. (13)

- " by (c2/8_rw)6¢ * and integrate over ali space, with the assumption of no contribution from

the surface terms. In this way, we obtain the equation

i / /d a 5fvD 6E* (14)Q(_,,_) =-__ _ _. d_,. , .
3

with the functional Q(w, 6(I)) defined by

Q(_:,5(I))= -,,(sw - 51) (15)

where 6W is the ideal MHD potential energy in the zero-beta limit and 6I is the inertial

energy of the perturbation:

,...-:{ +,o.(. ,,.,.,]}
(16)

c_ / d3r 1 V L6¢ 2_ 6I - 8_ v--_n (17)

12
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The term on the right-hand side of Eq. (2la), obtained by integration by parts, is proportional

to the power transfer from the alpha particles to the electromagnetic field:

z / / =/ (18
8

The inertial energy 6I is clearly positive definite, and if we assume ideal MHD stability, then

6W is also positive definite for any bounded perturbation 6(I).

If we take the kinetic term on the right-hand side of Eq. (14) to be small, then to

lowest order the eigensolution is 6_o, with frequency w0, and it satisfies Q(w0, 6_0) = 0. To

next order, the shift in the eigenvalue, 6w = w -w0, due to the kinetic term treated as a

perturbation is given bv the equation

c9Q(_o,5"o) I / /iSw Cgwo = _ E cs d3r d3v S fvD • 6E* . (19)8

Equation (19) can be exactly interpreted as the time rate of change of the wave energy (left-

hand side) being equal to the power transfer of alpha particles to the electromagnetic field

(right-hand side). Furthermore, the wave energy can be easily seen to be positive:

0_.' - 0_ (_26W)_61 =6W+6I> 0 (20)

by virtue of the assumed MHD stability. (Later we will point out that this conclusion

depends on the perturbation 5_ not being singular in the main domain of integration.)

B. Large-Aspect-Ratio Eigenmode Equation

For the sake of simplicity, we now reduce the general equation for the TAE mode to its

form in the limit of large aspect ratio. Assume that the inverse aspect ratio _ = a/Ro is

" small relative to unity, where a is the minor radius at the plasma edge and Ro is the major

radius as measured to the location of the magnetic axis. Then, we introduce the flux-type

large-aspect-ratio coordinates (r, 0, ('), where r is the minor radius coordinate (centered on

the magnetic axis), 0 is a poloidal angle coordinate, and C is the toroidal angle coordinate.

13



These coordinates 4°'41 are related to the cylindrical coordinates (R, ¢, Z) centered on the

toroidal axis of symmetry as follows-

R : Ro + rcos8 - A(r)+ r_(r)(cos28- I) (21a)

¢ = (Z b)

Z = rsin8 + tri(r) sin 28 . (21c)

The Shafranov shift of the flux surfaces is given by /X(r); here the convention is & > 0,

since the inward nature of the shift for flux surfaces with increasing minor radius has been

accounted for with an explicit negative sign in Eq. (2la). The quantity r/(r) = (r/Ro+ ,._%')/2,

with _' = d(&)/dr, is small, of O(c). Solving the Grad-Shafranov equilibrium equation by

means of an expansion in powers of e yields A'= (r/Ro)(3p + _/2), with 3p = 2((p)-p)/B2p

a measure of the poloidal beta value and 2, = <B2v)/B_ the internal inductance, where the

brackets (...) indicate a volume average. Note that the shift __ is (,9(_2), whereas its radial

derivative, LA',is (9(_).

In the absence of the terms that involve the quantity rl(r), the coordinates (r, 0,() in

Eq. (21) would be identical to the well-known Shafranov coordinates 42 (which were used

in Ref. 1). However. in the Shafranov coordinates representation, the safety factor q =

B. _7f/B • V0 would contain 8-variation to (.9(e). Since our intention is to investigate the

effects of toroidicity-induced poloidal coupling to O(_), it is more convenient for our purpose

to employ the flux-type large-aspect-ratio coordinates defined in Eq. (21), for which q =

q(r) + O(e2), where r is itself a flux coordinate to O(c2). With these flux-type coordinates,

the derivative operator along a field line, B. V, involves poloidal dependence only in the
w

overall multiplicative factor B. VS, which is related to the Jacobian for these coordinates;

i.e., B-V6¢ = (B. V8)[_9/08 + q(r)c0/0(]_¢(r, 8, _).

14



With these large-aspect-ratio coordinates, we have the following representations:

rBo
B = _ V,-x V(qO- ¢) (22_)q(_)

(r'Bo_ 1 (22b)
B . VO= \q(_)] 7

J=rRo 1+_ cos0 -t-'0(¢2). (22c)

1[ ]g_ =Vr.Vr= 1 +2A'cos0, gOO=V0.V0= r2 1 9 +_' coso (22d)

Vr V0 1 sin0[_o ] ___1 [ --(_o) ]• ==--r +(r__')' , Vi'rC- Rg 1 o cos0 (22e)

with Vr. V¢ = V0. V"_ = 0. The various other metric coefficients for this coordinate system

can be worked out straightforwardly. The quantity J = lvr. (V0 x V¢)] -1 is the Jacobian.

We now examine the form of the individual terms in Eq. (13) in this large-aspect-ratio

tokamak equilibrium. Noting that

V.(B2V2.*) = -V.[B x (B x Vg)] = j Or B2J _ +7 O---O --_ +O(s2) "

(23)

we can write the Laplacian-like first term in Eq. (13) exactly, to O(¢2), as follows:

, (B.V) _-_V. B_V± _-_(B.V)6_ = (B.V) jB 2 Or JB_ _rr B-_(B'V)6¢

+ JB_ 0_ 5B_ N _(B'_')_¢ . (0_4)

For the most part, the O(e) terms that arise from toroidicity-induced coupling contribute

only small modifications to the Alfv6n wave behavior. However, the O(e) toroidicity con-
t

tributions become quite significant in those terms of the eigenmode equation that involve

- a double derivative of the wave function 6_ with respect to radius, because the coefficient

of 026¢/0r 2 almost vanishes when the mode frequency a3 is nearly resonant with the shear

15



Alfv6n continuum. In particular, the O(e) terms are able to resolve the degeneracy that oc-

curs when the cylindrical spectra for two different poloidal harmonics cross each other: i.e.,

2 2 2

when k_m v A = kll_, vA occurs, for modes with poloidal mode numbers m and m', at some

radial location rra.m,. When this happens, the CO(e) terms give rise to a "gap" in the toroidal

spectrum of singular frequencies, whose gap width is O(e). The TAE mode exists within

such gaps. With this discussion in mind, we will retain the toroidal ©(_) coupling effects

only in those terms that involve a second-order radial derivative of the wave functien.

"_\_ now proceed to multiply each term in Eq. (13) by the factor J/rRo, where J is the

Jacobian given in Eq. (22c); to Fourier transform the wavefunction as

5¢b(r,O.C,) = _ _bm(r)exp(-irnO + inC,) (25)
tri

where the toroidal mode number n is conserved: to define the local quantity

= hT0 (26)

which is obviouslv the parallel wavelength in the cylindrical limit; to introduce the new wave

function

= ! ; (27)
r

and to move the parallel gradient operators in between the two radial derivative operators

in the first term of Eq. (13). Incidentally, note the useful identity

8)

for an arbitrary radial function g(r). In this way we manipulate the first term of Eq. (13) to

find that

=_ r 2 dr r3 k_m d---'-_+ r 2 dr ra dr r

ld[ _,]c[[m (k,,rn+ 1 dr +kl,m-1 dr )]+r--7 d--'_ r3" dEm+l dEm-1 (29)
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Next, consider the second term of Eq. (13). Since it does not entail a double radial

derivative of the wave function, we evaluate it without toroidicity corrections as follows:

R 2

(30)

" This second term exactly cancels part of the first term of Eq. (13).

Next, evaluate the third term of Eq. (13). Consistent with our earlier argument, we retain

the toroidal corrections to (9(e) in the portion of this term that involves a second-order radial

derivative of the wave function and thus obtain

d V. _V±5_ _ r _ -Era
- v"A r 2 dr . dr J -_r

+ A' 1
r _A E_ r a , (31)• _'d_" _ +_0 \ d_" _ d_"

l •

where VAO -- Bo/[;\:_(r)M_] _/2 contains radial variation only through the density N_(r), the

constant B0 being the magnetic field strength evaluated at the magnetic axis.

Since the fourth term of Eq. (13), viz., the kinetic effects for alpha particle-induced

destabilization, etc., can be treated as a perturbation, we neglect toroidal corrections to this

term. Moreover. since it does not essentiallv influence the continuum resonance problem, we

will simply represent this term in the following symbolic fashion:

-4 rria,,r2

E e /d3vvD • VSf _ iLk(as)Era . (32)C2 3

Here Lk(w) is a kinetic operator, perturbative in nature, that represents alpha-particle in-

stability drive, various plasma dissipation effects, and possibly other non-ideal MHD effects.

- Finally, collecting the results given in Eqs. (29)-(32), we obtain the TAE wave equation,

including toroidicity effects to lowest order:

dr ra- _ -k_ -g-j +_E_ _ _ -(_- _) _ - k_ _F_+ iL_(_)E_
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[ ) (1 1)_0+ -_vd r3 w Z_' + 2r dEm+ldr 4- dEm-ldr - r3A'kllm kll_+l dr + kllm-1 _dr "

(33

The last terms of Eq. (33), which involve r/Ro and A', are O(¢) and comprise the toroidal

coupling. Because the poloidal mode number may assume any integer values, Eq. (33)

actually constitutes a system of equations that couple the mode amplitudes Eta.

Before ending this section, we introduce two simplifications of Eq. (33). First, we ob-

serve that the terms involving r/R0 and _' are only small corrections except in the gap

regions where there occurs a degeneracy of the form kllm -_ -kllm±l , with kllm = _/VA.

Since the toroidal coupling is important only in the vicinity of such gaps, we may make the

simplification:

Next, we will approximate the quantity _' = (r/Ro)(_p + gi/2) by the constant value it

assumes for a plasma with zero beta and constant current profile, namely, A' = r/4Ro. This

. approximation is justified to the extent that the validity of our large aspect ratio reduced-

MHD treatment requires _' to remain small.

Using Eq. (34) and the approximated form of _', we can now simplify Eq. (33) to the

following form:

dr rz r2_-_-k_., --_-r j+_T _ e_-(m_-l)\v_ -kli m TE._

+_r r3g(r) dr + d_ =-iLk(_.')Em (35)

where we have defined the coupling quantity g(r) = 5r/2R0. Equation (35) is identical to

the eigenmode equation given in Refs. 2 and 3, except that the coupling strength of 5r/2Ro

obtained in the present work is more accurate, compared to 3r/2Ro in the earlier work. The

reasons for the difference are that Refs. 2 and 3 assumed concentric circular equilibrium flux

surfaces and also neglected the coupling from the field line bending.
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In the remainder of this paper, we will solve the coupled system of equations represented

in Eq. (35), both numerically and analytically.

IV. Vr, riational Formalism for Shear Alfv6n

Continuum Damping Rate

In this section we develop a perturbation method for obtaining the Alfv6n damping rate

within the ideal fluid equation context from the zeroth-order TAE eigenfunction and its

real eigenvalue, by applying an analvtic continuation technique based on the prescription

of causality. We shall first use the cylindrical approximation to describe damping due to

the shear Alfv6n continuum resonance and then treat the general coupled-mode problem in

toroidal geometry. This method is accurate if the eigenfunction is nearly real.

A. Formalism in Cylindrical Geometry

In cylindrical geometry, the poloidal modes are uncoupled and. from Eq. (35), the reduced

MHD equation for the amplitude of the m, th harmonic takes the form

__ ra o 2 r 2 - (m 2 - 1) - kllm r Em= -iLk(_z)Em .
dr _- klim _ + _' Em_rr \t._/ ,v a

(36)

In Eq. (36): Lk(_,') is a perturbation operator that primari]y represents the kinetic instability

drive due to high-energy alpha particles, as well as the bulk plasma Landau damping and

perhaps other non-ideal MHD dissipation. For definiteness, we solve Eq. (36) with the

boundary condition Era(a) = 0 at the plasma boundary r = a.

From Eq. (36) we can construct a quadratic form by multiplying by Em(r) and inte-

• - grating between two arbitrary radial points rl and rs, taking care to retain the endpoint

contributions"

/:2drr{[r2(dE,_2 (w2) d (ez)}\-_/ + (m_- _)E_ _._- k_ -_e_ _
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/? I::= i dr Em Lk(w)Em + (Era C,_) (37)
1

In Eq. (37), the "flux" Cre(r) is given by

(w 2 ) dEm(r)c_(_)= _ -k_ _ d_ (38)

and it is assumed that the quantity [(W/VA) 2- k_m] does not vanish anywhere in the interval

from rl to r2. Should there exist within this interval a point r, or points r.,j where the equality

(._'/VA) 2 -- k_m = 0 holds, then Eq. (37) is modified to the following exact relationship:

\_] +(m 2-1)E_ _ - k_m -_v" rE_ d 1

= i drEm Zo(_:)Em+ (EraCre) + _ [Em(r_,3)C"(r[,J)- Em(r+_,3)Cre(r+,,3)](39)
: 3

where

P = lira + (40)
- , 6--o , ,+

denotes the principal value integral, with rf = re 4- 6, and we use the appropriate general-

ization to the principal value integral when multiple singular points r_,3 occur. We shall take

C._(r) to be continuous at the singular points r_,j. Letting rl _ 0 and r2 --_ a, we finally

obtain the equation

G(,..E_)=-E r + -)] C_(_,)+;f0°d_Z_L_(,)E_ (4_), [Em (r,,j ) - Em ( r,,3 ,:
3

where the quantity G(,'.E,,) is defined by

G(.,', E_ ) -- lira _ dr r r 2
,-o _, _] + (_ -_)E_ _ -k_ -_,__E__

+ 6,.,,.o v_(O) dp (42)

Th_prin¢ipl_v_m_in Eq.(4_.)i_ne_r_" sincedE_/d__ (_/d - _)-_ _ _ --__,j.
Note that the quantity G(w, Eta) defined in Eq. (42) is related to the quadratic form Q(_',6O)
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of Eq. (14) as G(w, E,,.) = wQ(w, 6¢). Also, for simplicity, we will ignore from now on the

endpoint contribution at the origin for m = 0.

We wish to treat the two terms on the right-hand side of Eq. (41), namely, the Lk kinetic

term and the singular wave function behavior at rs,j, in a perturbative manner. Thus, to

lowest order, we will pose the problem such that Lk is neglected and the wavefunction is

• _.(o)taken to be continuous at rs,3 i.e., Em(r+j) = Em(r_,j). The lowest-order solution _,,,,

with both C_)(r) and E_)(r) continuous everywhere, satisfies G(_oo, E_ I) = 0, which will

allow for a real eigenfrequency a_0. Then. to next order, we shall find an expression for the

complex shift in the eigenfrequency. The discontinuity of the next-order wavefunction at the

points rs,3 can be obtained by means of the application of the Landau causality procedure

to a logarithmically divergent structure, as will be shown in the discussion to follow.

Our formal perturbation treatment assumes that the terms on the right-hand side of

Eq. (41) are small and expands the eigenfunction and eigenfrequency as
it,

Era(r) = E_)(r) + 6Era(r) , _v = _0 + 6_. (43)

It can be shown that Eq. (41) without the L_ term, solved with regular boundary conditions

at the origin r = 0 and the boundary condition Era(a) = 0 at the edge and with Era(r)

and Cre(r) continuous across the points r,,j, admits solutions with real eigenvalues _0 and

real eigenfunctions E_)(r), which satisfy G(_o,E_ )) : 0. This constitutes the lowest-order

solution.

Now consider the effect of the perturbation, which enters in next order. At the origin

and at the plasma edge, we impose the same boundary conditions on 6Era(r) as apply to

E_/(r). Substituting Eq. (43) into Eq. (41) and expanding to first order in 6Era and 6w, we

obtain

Owo
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= -- X [SEm(r+j) - (_Em(r_j)] C_)(rs,j) + i 9[0a dr E_ ) Lk(wo)E_ ) (44)J

where we evaluate

,(1)}-wo:rEg ) fEm'_r vA "
._- (45)

Integrating by parts in Eq. (45) and recognizing that E_ }satisfies Eq. (36) with its right-hand

side set equal to zero. we see that

G (wo, E_' + 6Em) = -2 Z [6Em(rs+,j)- £Em(r_,3)] C_)(rs,J) • (46)
J

Thereforewe can rewrite Eq. (44) as

- , f'_ E(mO) .&, OG(wo, E_ )) _ _ [6E,,,(r +s,3)- fErn(rs,j)] C_)(rs,J)+ i dr L_(wo)E_ ) (47)
Q

(_a$O 3 1

Comparing the terms on the right-hand sides of Eqs. (44) and (47), we see that the term

containing the discontinuity in 6E_ has changed signs relative to the Lk term.

In order to obtain the discontinuity in 6Era at the singular points r_,¢, we note that in

the vicinity of such a point, Eq. (36) can be written as

dr rg-- --r - k_ - 0 (4s)

from which we obtain

dEm (r) _ C_)(rs)

_ (49)
L-- IIJ

For w = wo, the resu|t in Eq. (49) matches the |owest-order solution E_ ). _Ve now apply the

causality condition th&t the frequency is forma]|y in the upper hMf-p]ane; i.e., w = Wo+ iT/,

with 0 < r/ << wol. This allows us to integrate Eq. (49) around the singular point rs.
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Treating the discontinuity in the wave function as a first-order perturbation then yields

C_)(rs,j) lim " dr

_,_ _-o [_0+,_), ]

_ -iTr sgn(_0)Cg)(r,,j) (50)
_:,_I_[_0_/' )]1

where sgn(_o) is the sign of _o. Substituting Eq. (49) into Eq. (46), we finally obtain

-_"._o._ooc(.,o.E_,)O_o- -_,Z,",,,I_ - k,',.Sl_..,.., +g d_ _.,
(51)

Therefore, as long as the inequality _oOG(_o,E_))/O_o = OQ(_o,_Oo)/O_o > 0 holds,

and treating the resonant mode structure as a perturbation, we find that the continuum

resonance gives rises to a damping contribution; i.e.. Im(&_) < 0 from the first term in

Eq. (51). This dissipation counteracts possible destabilizing effects from the Lk second term.

Marginal stability occurs when the right-hand side of Eq. (51) vanishes.

Note that, for a nonsingular perturbation, the inequality _o(OG/O_o) > 0 is indeed valid

Icf. Eq. (20)]. However, with a singular perturbation _Em, we need to invoke a basic "pertur-

bation assumption," namely, that the contribution to OGle%: coming from near the singular

region, as obtained by analvtic continuation, is small compared to the bulk contribution.

In the kinetic integral of Eq. (51) the "perturbation assumption" also allows us to neglect

integration regions near the resonances rsi, where a singular response is otherwise possible.

B. Formalism in Toroidal Geometry

Now we proceed to treat the general coupled-mode problem in toroidal geometry. We consider
I

the system of coupled equations for the TAE mode as given in Eq. (35), with the same

. boundary conditions as in the preceding discussion, namely, Era(a) = 0 at the plasma edge

and regularity of Era(r) at the magnetic axis as r ---, 0.
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As before, wr define the "flux" quantities Cre(','), as given by

Cre(r) = v3 _ D.,,,(r,._) dE,,dr (52)n

with

Dm.(r,w) = v--_A-- k_m fm._,+ g(r) ($m+_,. + _=-,,_) . (53)

Equation (52) can be formally inverted as

dEm 1 Dmn(r,_v)C,_(r) (54)= IID( , )ll

where ID(r,._)l represents the determinant of the m x n matrix whose elements are Dmn,

and D m_ is the cofactor of the element D.,.; i.e.,

Dmq Dq, = f,_,n DI • (55)
q

o The second-order differential eigenmode equation (35) can now be rewritten as two first-order

equations, one being Eq. (54) and the other being

dCm(r)dr = (rez - 1) - k_., rE., - r' E._ -_r - iLk(w)Em . (56)

In terms of this formalism, if the kinetic operator Lk is neglected temporarily, -:e see

that the toroidal shear Alfv6n continuum corresponds to those points for a given frequency

..' where the determinant of the coefficients of the highest-order radial derivative terms in

the eigenmode equations vanishes. In other words, the eigenmode equation is singular when

the coefficients of the terms involving second-order radial derivatives of the wave function

components Em lead to a singular matrix equation. This happens when the determinant

vanishes" D(r,a:) = 0. For frequencies in the continuum, therefore, the inversion from

Cm back to Em fails, unless analytic continuation is employed. Thus, for a given frequency

_ o.,, continuum resonance interactions occur at r = r,j where the condition ]lD(w,r_,j) l = 0

holds. If Eq. (54) is integrated in the vicinity of such a singular point r_,j, it is clear that
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the wave function Era(r) is logarithmically divergent at r = rs,j if (O/OT_,j)l]D(_,rs,_)[I _ O.

However, from Eq. (56), we see that the flux Cre(r) is continuous at the singular points.

To derive an expression for the continuum damping rate, we follow the same procedure as

has been described for the cylindrical case, but appropriately generalized to take into account

the toroidal coupling of modes. Multiply Eq. (35) by Era(r), sum over mode numbers m, and
i

integrate from r = 0 out to r = a with the exclusion of the small intervals (rs,j - 5, rs,j + 5)

centered at the singular points rs, j to obtain the exact relationship

G(.,E._)=-Z[E._(r_+,j)-E,_(r_-,j)]Cm(r_,3)+i_-_L_drE,_Lk(._)E,_ (57)

with the definition of the quadratic form as

\_) +(m "_-I)E_ _ - k_m - rE_ -_r -_A

+ r2?(r) _ dr + dr "

Equations (57) and (58) are the obvious toroidal generalizations of Eqs. (41) and (42), with

P designating principal value with respect to the singular points, as before.

Note, incidentally, that Eq. (58) can be rewritten as

11 G(,.'.Em) =,ZPjo drrJo _ e [1 + cos,.,: 2 "z dr

- E p L

o

with Em real and E_m = Eta. For g(r) < 1/2, Eq. (59) shows explicitly that for our

eigenmode equation, the inequality

0 [G(_z'Em)] >0 (60)Ow w
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holds for an arbitrary non-singular function Em if the density has a radially non-increasing

(1) < 0. (Strictly speaking, since Em is singular at the resonance points, theprofile, d _ =

positive definiteness in Eq. (60) requires that our perturbation assumption, mentioned earlier,

also be satisfied.) Then, if G(w, Em) = 0, from Eq. (60) we have w -_ OG(w, Em)/Ow > O,

which is equivalent to positive wave energy.

Next, introduce the perturbation expansion of Eq. (43). The zeroth-order problem, with

Lk assumed to be negligible and with E_l(r), as well _0 q)(r), taken to be continuous at the

singular points r_.j, yields a real eigenfunction E_ I and a real eigenfrequency w0 that satisfv

G(wo, E_ )) = 0. Then, expand Eq. (57) to first order and use the same type of manipulations

as were used in obtaining Eq. (45) to find the toroidal generalization of Eq. (47):

oc(. o, = Z:m
Again, we obtain the discontinuity in 5Era by invoking causality to integrate Eq. (54) around

" a Landau-type contour at the singular points:

_ -irr sgn (°o-_D0)Dm"(wo, r_,j)C(_°)(r_,j)

Finallv. substituting into Eq. (61) yields the complex frequency shift 5w as follows"

6.: OG(w°'E_))Owo= - z_r _ L[sgn \(allDl_°'_'4)ll)-a_o _.._, D_(Wo, r_,j )C_°)(r_,j)C_)(r_,j )Ii

/0°+i _ dr E_ ) Lktw _r(o),, oj-'--.,_ (63)

In Appendix B, it is proved in general that the first term on the right-hand side of Eq. (63)

is imaginary and negative as long as our perturbation assumption is satisfied. Therefore.
o

since the wave energy is positive, we see that the continuum resonances at r = r,,j lead to

damping of the wave. At the end of Appendix C, we indicate that even when the perturbative

assumption is not satisfied, no unstable roots can exist.
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V. Analysis of the Cases of Two-Mode and

Three-Mode Coupling

In practice, only the coupling of a finite number of ra-modes needs to be considered. For

example, when n = 1 and q(a) _ 3, there is coupling between the ra = 1 and ra = 2 modes

- in the region where q = 1.5, and coupling between the ra = 2 and ra = 3 modes in the region

where q = 2.5, so that the analysis can be limited to only three ra-modes. In this section we

will examine how the general formalism of Sec. IV reduces specifically for the simple cases

of two-mode coupling and three-mode coupling.

\Vhen the number of coupled modes is truncated, it is possible to be quite explicit in the

form of the cofactor matrix elements D m_ and the determinant liD II. For the case when only

two modes, say. m and rn + 1. are coupled, we find the following expressions:

,2 (64a)

Dm,rn __ 2 vrn+l,rn+l7 -- kllm+l ' = - k_TM
?"A _' 2A

=-_. _ (64b)
t'.4

where the other elements D mn are zero. Similarly, for the case when only three modes, say,

rn- 1, ra. and ra + 1. are coupled, we find the following expressions:

ID(_.,,r)l - _ - k_.__, - k_., " - k_.,+,

[_,2 _ k2

Dm::i:l'rn::i:l-" (_--_A - _rn) ( 03A --]¢_m::]=l), _2 <UZ] (65C)

= - --_ (65d)
D''m_ = D"_'' - I:_.,., _ _ .
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Up to terms of O(g2), one can ascertain that the cofactor elements normalized to the deter-

minant, D""/]]D]I , agree for the two-mode and three-mode coupling cases.

Let us now consider a specific example of a two-mode interaction, namely, the case for the

n = 1 TAE mode with the m = 1 and m = 2 modes coupling, and with the density taken to be

almost constant until near the edge of the plasma, where it decreases rapidly. This example

is nearly tractable analytically. Based on our earlier discussion, we expect to have a TAE gap

mode with the normalized frequency Ft = [2q(rg)] -1, where we define Ft = ,JRo/vA(O), whose

amplitude has a rapid transition at the gap location r = rg. determined by q(rg) = 1.5. Here

we assume that the value of the plasma density at the gap location is nearly unchanged from

its value at the axis. Ari(rg) _ Ni(O), which we will designate as :V0. Near the edge of the

plasma where the densitv falls rapidly, the m = 2 mode will resonate with the shear Alfvfin

continuum at the singular point r = r,, where f_ = [N0/N(r_)]l/:[1 - 2/q(r_)].

We will first neglect the resonance and develop an analytic description for the zeroth-

2 is indeed constant it follows from Eq. (56) thatorder MHD gap mode. To the extent that vA

dC1/dr = 0, and since C1 = 0 is required at the origin, we may take C,(r) = 0 everywhere.

Then. from Eq. (54) and Eq. (64), we have

dE, _'T_2Rg C2(r)

d_ _ [(_ _ _)(_ _ _) _ _] (66_)

dE_ (_ - ,_) R_c_(_)
d_ = _ [(n_- _)(n_ - _) - _] (66b)

where _,_2 = [1 - m/q(r)] _. For a constant density, profile, the structure of the dispersion

relation in the limit of small g can be extracted from Eq. (66b). Integrating Eq. (66b) from

the origin to r = a and applying the boundary conditions Ez(a) = 0 = E2(0), we obtain

fo _ = I_ + I_ (67)
(ft2- R_ C_(r)

E_(_)- E_(O)= 0 = d; ,._[(n_- _,_)(_ - _) - _]

where we have rewritten the integral in terms of two other integrals,

,_/o ]
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h=/0 ° d_ R°_C_(_) (fl_0- _f) ]r a [(fi_ - _)(flo 2 - _) - _F/_)] (69)

with ft0 = 1/3 being the normalized frequency at which the m = 1 and 2 modes intersect

• in the cylindrical limit. This separation into two integrals is convenient for the purpose of

isolating the behavior near the continuum resonance.

The principal contribution to the I1 integral comes from the gap region near q = 3/2,

where the coupled mode behavior is still well described if we take C_(r), g(r), and r a to

be constant, evaluated at r = rg. Away from the gap location, the integrand of I1 tends

to become small. Hence we can approximately evaluate the I1 integral by expanding its

integrand about the gap location" let .Q= rio + 6ft, with -Q0= I/3, and let q(r) = 1.5 + 6q.

Also, expand the parallel wave numbers as

.2_ ( 1 ) 2 18_-,-_ __ _ ( ° ) 2 116- -_ni = 1 3 6q - 9 + 27 6q , _ = 1 . --7 + o_.2_ 6q 9 27 6q. (70

Then we have

h -_ s_-_q'(,-_) _ [(2x+ y)(_:- y) + (_(,-_)flg)_]- [2x2+ (_'(_-_)flg)_]

__ 81 x/_ = 6fi Rg C2(rg) (71)

where z = 8(6q)/27 and y = 2(6fi)/9f10.

The integral I2 has hardly an3' contribution from the gap region, since in its integrand,

the numerator is nearly odd about the point r = rg, whereas the denominator is nearly even.

The contribution to this integral occurs away from the gap region, i.e.. where the coupling

factor g can be treated as small. Hence we can approximate I2 as

_oo Ro_c_(_) (72)

In order to evaluate Eq. (72) for I2, we need to replace C2(r) by a function C2(r) that

approximately satisfies the governing differential equation, Eq. (36) with Lk ---*0, as well
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as the proper boundary conditions. Away from the gap region where the modes become

uncoupled (i.e., in the g = 0 limit), the appropriate function is given by

- "A - 4)C2(r) = Ro2 -d-r--r" (73) .

The boundary conditions are taken to be E2(0) = E2(a) = 0 and C2(rg) = C2(rg). What

makes it possible to have a solution E2(r) that satisfies the eigenmode equation and also

satisfies these three boundary conditions is the fact that, since the equation has a singular

point at r = rg, it admits solutions with a discontinuity (the "continuum" solutions). The

solution /_2(r) may be constructed as a linear combination, /_2(r) = E_(r) + C_Ed(r), of a

continuous solution, Ec(r), and a discontinuous solution, Ed(r). Even though E¢(r) diverges

logarithmically at r = rg, it is "continuous" in the sense that E_(r 9 -6) = E¢(% + 6), as

6/% --, O. whereas for the discontinuous solution. Ed(rg --6) ¢ Ed(rg + 6). Numerically,

one obtains the continuous solution by integrating Eq. (36) with f) = f)0 from r = 0, with

" - ± = rg 4-6, for 6 << 1) and thenthe boundary condition E_(0) = 0, up to r = rg (with rg

+ ) out+ with the continuity condition E_(r_-) = Ec(rgcontinuing the integration from r = rg

to the edge of the plasma at r = a. The discontinuous solution, which is set equal to zero

for 0 < r < rg, is obtained bv integrating from the point r = r + with the conditions.__ .._ . g ",

Ed(r_) = 1 and Cd(r:) = 0. out to the plasma edge. After we apply the edge boundary

condition E2(a) = O, we find /_2(r) = E_(r)- [E_(a)/Ed(a)]Ed(,'). The solution /_2(r)so

obtained, and its corresponding C2(r), will match, to within O(_), the correct solution in

_ - + < r < a. In the narrow interval in the vicinity of rgthe domains 0 < r < rg and rg _ . .

the solution /_2(r) will differ from the true solution E2(r), but the function C2(r), which ;_

continuous, will remain close to the exact C_(r), since the condition C2(%) = C2(r_) has

been imposed. Finally, using this approximate solution, we reduce Eq. (72) for the integral

I2 to the following result"

h ) - )=g
Ed(a) (74)
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The value of the ratio in Eq. (74) is obtained numerically.

Using Eqs. (67), (71), and (74), we are able to obtain the frequency shift

3 q'(rg)g(-rg)cr_ 16X/_2rg

--= [ (16_q,(_)___]1/_ (75)• li0 817ra 2 1 + \ 27:ra2 /

in terms of the dimensionless ratio a, where

A plot of this ratio cr as a function of q(a) for safety factor profiles of the form q(r) =

1 + [q(a) - 1](r/a) 2 is shown in Fig. 4 for a density profile that is constant out to the plasma

edge. Since a < 0, the eigenfrequency is downshiffed from the gap frequency, i.e., 6£t < 0.

For these same quadratic q(r) profiles. Eq. (75) reduces to the following simple formula.

which exhibits the dependence of _fi on the inverse aspect ratio a/Ro, the edge safety factor

q(a), and the discontinuity parameter er:

20 a
a _ [q(_)_lp/2

_fl= -- (77)

In Fig. 5. the numerically obtained values for the normalized frequency shift _fl(R0/a) are

plotted as a function of the inverse aspect ratio, for several values of q(a). As a/Ro _ O,

Fig. 5 shews that the values for $fi(R0/a) exactly' approach the respective values predicted

by the semi-ana!vtical theory of Eq. (77).

Having obtained an analytic description for the zeroth-order MHD gap mode. we next

consider the damping caused by the shear Alfvdn continuum resonance of the m = 2 harmonic

near the plasma edge. For the sake of definiteness, we take a density profile that is flat over
o

most of the plasma and then decreases linearly near the edge:

- _N0 , for r <a(1-A)

= / (73)
[

N0(1 -_.___a_)_,, for a(1 - _) <r < a.

\

31



For simplicity, we shall neglect the radial variation of the shear at the resonance point r = rs.

(Recall that we have assumed q(a) < 3, and hence the natural resonance of the m = 2 mode

at q _ 3 due to q(r) variation when the density is flat has been eliminated from our example

problem.) At the resonance point only the m - 2 mode will resonate, and so we may neglect

O(¢) coupling terms at resonance. Then Eq. (63) yields for the continuum damping rate

,5[v.4(o)c_(,',)]_
--=-rr )3 ac (79)_0 (r, _o o,,-'T

where

0G ,_ 9 w0 dr r 3 (80)
_0 o_0 - - vA(0) _] + \ d_

Since the integrand in Eq. (80) tends to be localized about the gap location, we calculate its

contribution by writing _ = flo + 6ft, with ft0 = 1/3, and q(r) = 1.5 + 6q, as before, and

then expanding Eqs. (66a) and (66b) for dEldr and dE2/dr"

. dE, ... g(rg)_o2Ro2C2(rg) (81)

(_ _h Ro_C2(_)dE2 .._ \ 27 9ilo ] ,

- 26_ _ )fl_] . (s2)T'q 27 9_o 27 9_0 ] _"

Now change the variable of integration in Eq. (80) from r to 6q and extend the range of

integration to find

drf3 -'_r J _- 2 drf3 dE2 2 =
16__( _

Therefore, since f_o2 = 1/9, using Eqs. (79) and (75) and the approximation r, m a, we obtain

-
\ 9[q(,_-:.)[c__!aal[C2(rg)J

[,.
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where g(rg) = (512a/2)(alRo)[q(a)- 1]-½ for the quadratic q(r) profile being considered

here. Numerically we find that [C2(r,)/C2(rg)] 2 assumes a value somewhat less than unity;

its precise value is shown in Fig. 6 for various aspect ratios.
a,

VI. Numerical Solution

In this section we discuss the numerical solution of Eq. (35) for the case of three-mode

coupling, specifically, for the n = 1 TAE mode when the rn = 1,2, and 3 modes are taken into

account. The coupled equations for these modes, Eqs. (54) and (56), with the determinant

]lD(_,',r)[ l and matrix elements D m'_ given by Eq. (65), were numerically solved with a

standard error-predictor integration routine.

In order to integrate the set of six first-order differentia! equations for E_(r) and Cre(r),

we need to impose the appropriate boundary conditions. At t,he edge of the plasma, since the

field quantity Era(r) = _m(r)/r is essentially the plasma displacement and we consider fixed
J

boundary perturbations, we have Era(a) = 0. The examination of boundary conditions near

the magnetic axis r - 0 is somewhat more complicated due to the mode coupling. Without

any toroidicity coupling (and neglecting kinetic contributions), the various wave functions

E,_ satisfy the following equation near the axis, where the density and safety factor may be

taken to be approximately constant (with the density and safety factor both taken as unity

at the origin in this discussion):

dr r3 7722 ,_-- - ( - = 0. (sh)

Equation (85) yields

• E_(r) o¢ r -l+lml (86)

as the regular solutions near the origin. However, this result is slightly modified when toroidal

coupling is included. Specifically, from Eq. (35) we see that Eta-1 in the toroidicity coupling

term, when Em-i has the form given in Eq. (86) and as long as dE__l/dr _ O, will drive
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a finite Em that also has the form given in Eq. (86). Therefore, in this case, the regular

solutions near the origin are not independent, and we need to include the driven response

in the proper boundary conditions. This can be accomplished by modifying Eq. (85) to the

following form:

-- - 1)pE + A = 0 (sT)dp

2 )] a constantwith p = r/a << 1 the normalized minor radius and Am = (5a/2Ro)[_2/(_2-_ m

parameter, with x m2= (m - 1)2 For Eta-1 _. p-2+rn near the axis (with m > 9).., Eq. (87)

yields the driven response

Era(p) = - (m - 1)(m + 1) A,,p _ In p . (88)2m

In the three-mode coupling problem whose numerical solution will be presented in this sec-

tion. we will apply the result of Eq. (88) for the m = 3 mode.

, With this information about the behavior of the solutions near the magnetic axis, the

six coupled equations for the dependent functions Em and Cre, for m = 1, 2, and 3, can be

integrated from near the axis at r = 0 out to the plasma edge at r = a, where the Em must

vanish. To satisfv the boundary condition at the edge requires knowledge of the solution

for the eigenfrequency ,z. This can be achieved by separately performing three complete

integrations and then combining their respective results. For the first integration, take E_

near the axis (i.e., for p --_ 0) to have the regular form given by Eq. (86), namely. El(p) = 1.

while taking E2(p) -- E3(p) = 0; denote the solutions obtained in this first case as E_)(r)

and C(_)(r). For the second integration, take E2(r) to have its regular form near the axis,

viz., E.2(p) = p, while E1 and E3 are integrated so as to satisfy Ea(p) = 0 and, from Eq. (88),

Ea(p) = -(2A/3)p 2 In p near the axis: denote the solutions obtained in this second case

as E_)(r) and C_)(r). Finally, for the third integration, take E3 to have its regular form

E3(p) = p_ near the axis, and take El(p) = E2(p) = 0; denote the solutions obtained in

this third case as E_)(r) and C_)(r). Now construct a linear combination of the separate
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solutions,
3 3

E_(_)= Z _,E_(_) , C_(_)= _2 _,C_(_) (89)
i=1 i=1

where the coefficients ei are to be determined by the boundary conditions Era(a) = O. If

a frequency _v can be found which have coefficients ei that make the wave functions Em

vanish at the plasma edge, then that a,, is the eigenfrequency and the resulting Era(r) areq

the eigenfunctions. We summarize the manifold of boundary conditions for E(_} and C(_} at

p - r/a (( 1 as follows:

E(31)(p) = 0 1% (p) = -(2A3/3)p _ lnp =
(90)

= rI_l C'_31(p)= 0C_(p) 0 _., (p)=O

C_')(p) = 0 C_2)(p) = p3(f12 _ 1) C_3)(p) = 0

C(3')(p) = 0 C_)(p) = (A3/3)(fl 2 - 4)p4(1 - 41np) C3(3)(p)= 2(n 2 -4)p 4

In writing Eq. (90), we have assumed q(0) = 1 at the magnetic axis.

In our numerical procedure, we first solve for the reduced ideal MHD (i.e., lowest-order)

eigenfrequency _,'o for the TAE mode. We begin with the guess _' _ _'g_p _= l- rn/q(rj) + 1[

v4(r_)/R0. Then we determine the continuum resonant points r,,j that satisfy the equation

D(_,'.r,,j)i ! = 0. Knowing these points, we integrate Eqs. (54) and (56). with the boundary

conditions given by Eq. (90), from the origin to r = r_(1 -6) with $ << 1; i.e.. just before

the first singular point is encountered. We jump to the other side of the singular point.

demanding that both Era(r) and Cre(r) be continuous at r = r_, and. beginning at r =

r,(1 + 6), integrate farther, either to the next singular point or to the end of the integration

domain at r = a. When the end of the integration is attained, we examine whether a

superposition of the E_ ) solutions will satisfy the condition

3

e,(m) E_)(a) = 0 . (91)
_=1
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The condition of Eq. (91) is equivalent to requiring that the determinant of the matrix,

whose elements are the values E_)(a), be equal to zero:

E[1)(a;w) E[2)(a;w) E[3)(a;w)

= p(2)IIE(._)II E_l)(a;w) .-.2 (a;w) E_a)(a;w) = 0. (92)

If lE(w) # 0, we make a new prediction w. for tile eigenfrequency according to the pre-

scription

_"--1 li - liE(.:.-,)
= IIE(-,,..-2)II- IE(-,',,-,)II (93)

where v is the iteration index, with w.-1 and w.-2 being the previous two guesses for the

eigenfrequency. When, to an appropriate tolerance, the condition E(_,) = 0 is satisfied.

then the eigenfrequency ,z0 has been attained, and the coefficients ei may be taken to be

r,(3) E_2)e, = -E(12)(a)E(33)(a) + ts, (a) (a)

e2 = E_')(a)E_3)(a) - El3)(a)E_')(a) (94)

--(2) E3(II _-,(2)(a)e3 = -EI1)(a)E3 (a) + (a)--, .

Equations (89) and (94) yield the corresponding TAE eigenfunction.

Next, the continuum damping rate is evaluated, with the use of Eq. (63). With the

exception of the quantity OG(wo, E_l)/Owo, the numerical evaluation of the various terms

in Eq. (63) is straightforward. The derivative oo ID(,_0. r_,j)ll/0r can be obtained bv finite

difference construction, and Cm(r_,j) can be obtained from the superposition Cm(r_,3) =

E, ei C_l(r_,j) of Eq. (89), where the values C_)(r_,j) have been stored from the numerical

integration of the differential equations. Also, neglecting the rn = 0 component for simplicity,

from Eq. (58) we obtain

OG(w. E_ ) _,) y'_ _:29 _. r2 _ d .
_' Ow - - m v_ _ + (rn 2- 1)(Eta) 2 -v] rE_ [/r .

+ rag(r)'-_r dr _" dr (95)
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In the limit of small a/Ro, this expression for woOG(wo, E_))/Owo in Eq. (95) is apparently

positive definite for a decreasing density profile. However, near the singular points rs,j, we

have (dE,,/dr) 2 --, (r - r,,j) -_, which leads to a divergent integral in Eq. (95). To ob-

" tain a finite value for the integral, a more careful construction of the frequency derivative

of the principal value function is needed. The method for such a construction is discussed
I,

in Appendix C, which gives an explicit analysis for the case without toroidal coupling and

indicates how the procedures developed there can be generalized to the case with toroidal"

coupling. We obtain a form for _oOG(wo, E_l)/O_so that is nondivergent, but which in a

strict sense has lost its positive definiteness property [see Eq. (CS)]. However, the positive

definiteness is still applicable as long as our basic perturbation assumption in fulfilled. Fi-

nally, we note that for the three-mode coupling problem, the most useful form for calculating

cgG(_o.E_l)/cga.'o is given in Eq. (Cll)of Appendix C. namely,

OG(_o,E_)) = _ 0 E(_o)ll c_O)(a) (96)0_' 0_:

where E is the determinant defined in Eq. (92).

In Fig. 7 we show the continuum damping rate. "/damp, normalized to the TAE mode

frequency _s0. as a function of q(a). the edge safety factor value, for a/Ro = 0.25. This

survey was performed for a quadratic q-profile of the form

q(r) = q(0) + [q(a) -q(0)] (97)

with q(O) = 1 and for three different density profiles: Fig. 7(a) is for the profile given by

Eq. (78)" Fig. 7(b)is for density profile :V;(r)/[1 + (r/a)2], where :V_(r)is given bv Eq. (78)'

and Fig. 7(c) is for the "smooth" profile

N0[e+exp(-'+2"_)]2F,2
• Ni(r) = r 2 ]

[l+exp( (z) 2a2-1+2-_')j (98)

with -51 = 0.2 and A_ = 0.05. The density profile of Eq. (98), normalized to unity at r = 0,

is shown in Fig. (8). When q(a) - 2.0, which was the situation examined in Refs. 1-6. the
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n = 1 TAE mode couples the m = 1 and 2 poloidal harmonics and is peaked near the surface

where q(r) = 1.5. The damping is then due to the interaction of the m - 2 component

with the continuum near the edge of the plasma. When q(a) is around 3.0, there is another

toroidal coupling, primarily between the m = 2 and 3 harmonics and near q(r) = 2.5, whose

frequency "gap" is close to the original TAE frequency.

This results in considerable structure in the frequency and damping diagrams in curves

of Fig. 7. The m = 2, 3 structure at the edge can excite the rn = 3 mode, which then either

produces large damping due to its excitation and resonance of the rn = 2, 3 components,

or very little damping, if the eigenfrequency of the components manages to "thread" the

gaps. A more detailed study of the threading is exhibited in Figs. 9 and 10. In Fig. 9 the

resonance diagram is shown for the profile of Eq. (98), with the parameters of Fig. 7(c) and

with q(a) - 3.165. Two eigenfrequencies are found, f_ = 0.389 and fi = 0.313, as indicated

bv the horizontal lines in Fig. 9. The upper frequency curve avoids all resonances and has

zero damping. We see in Fig. 10(a) that a large rn - 3 component has been excited. The

eigenstructure for the lower frequency mode has a negligible rn = 3 component, but the

rn = 2 resonance at the edge gives considerable damping with 7/fl = -0.14. In this case the

large damping is due to the intersection of the eigenfrequency at a resonance that is verv

close to the location of the outer gap at ria = 0.841. Our perturbation method is suspect

here because the eigenfunction can have several singular points and our assumption that the

eigenfunction is real can break down. An alternate method to calculate the damping rate in

this case is discussed in Appendix D; in general, the modified calculation predicts an even

larger damping rate (cf. Fig. 13).

For larger q(a), there is a tendency for the magnitude of the damping rate, I'_/"], to

decrease. The damping rate is particularly small when the density profile is gradually de-

creasing, as seen in Fig. 7(b).

In all, we see that the magnitude of the damping is sensitive to detailed parameters.
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For the rather flat density profiles of Figs. 7(a) and 7(c), we typically find 0,01,

although rather narrow parameter ranges can be found that avoid resonance and give either

particularly low damping or particularly heavy damping. With a density profile that slowly
e

decreases radially, somewhat lower damping rates are found with I'y/ l < 0.01.

" VII. Discussion

We now wish to assess the importance of the continuum mode damping calculated in this

paper. A description of how to calculate the alpha particle instability drive is contained in

Appendix A. with the final formula for estimating the alpha-induced growth rate given in

Eq. (A33).

In applying the formula of Eq. (A33) we note that the only significant parameter whose

value is flexible in the various foreseen ignition experiments is p_/g_,, the ratio of the alpha

particle Larmor radius to the alpha particle scale length. The background plasma beta is

usually chosen to be as high as possible, commensurate with global MHD stabilitv. The

electron temperature T_ is usually chosen to be as low as possible while still satisfying the

achievement of ignition conditions; for D-T ignition, the temperature is taken to be 10 keV.

In Table I we list nominal parameters for the TFTR. CIT. and ITER experiments and observe

that the central values of the background plasma beta are nearly the same in the various

experiments. The ratio XA = va/v_o _x T,1/;/voo3_/_ likewise tends to be fixed, for fixed beta

and T. From Eq. (A26) we note that the alpha particle beta value 3_ is specified as a given

function of the temperature, the plasma beta. and the isotopic mix of deuterium and tritium

(henceforth it is here assumed that ND = NT = N_/2). since the product ./'_.:_rs is only a

• function of the electron temperature and (cry} is only a function of the ion temperature. For

the sake of definiteness, we will take a central plasma beta value of/3 = 0.03, along with

" X A "-" VA/VaO "-" 0.55 and Ro/a = 3. The parameter that can vary from machine to machine,
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and from experiment to experiment in a given machine, is

_,,_ 3Ro V,_oP,_o

w 2ra VAg._

with p_o = v_o/wc_ and _21 - a- o-7]lh/_] [(see Eq. (A26)]. For the purposes of our modelling,

we will use the q-profile used earlier in this paper, q(r) = 1 + [q(a) - 1]r2/a 2, so that '
a-

rg/a = [ 1 ]1/2 and we take q(a) _ 3, so that rg/a = 1/2. Then the quantity _ for a2(q(_)-1) ' ,_

10 keV plasma can be written as

- [ 1.5a/go (TFTR)o.',_ 16p_ a

_ = I O.8a/fo (CIT) (99),,,; a go 0.6a/_o (ITER) .

The value of the parameter a/f,_, depends on the temperature profile that is actually achieved

in the experiment.

In Fig. 11 we plot the ratio of the growth rate to the oscillation frequency. %/_, predicted

from Eq. (A33) for a plasma at various temperatures. First, focus on the T=10 keV curve

in Fig. 11. Note that a 1% value for 7_/_-' requires a relatively steep alpha particle scale

length compared to the minor radius a: namely, fo/a __ 0.24,0.15, and 0.095 for TFTR,

CIT and ITER. respectively. A one-percent growth rate can usually be counter-balanced

by the Alfven resonance damping which, as we have observed in $ec. VI, is typically of this

magnitude (see Fig. 7). If instability of the n = 1 mode does arise, the C_ scale length and

also the value of _ should change due to instability, with '3_f_ remaining roughly constant.

This relaxation should stabilize the mode, and since _,_/a is small, the alpha particles should

still be contained. Perhaps the only difficulty in such a scenario is that the alpha particle

heating would become more diffuse, which might influence various ignition scenarios.

After ignition, the plasma temperature should rise. Two extreme possibilities are that

either the beta will remain constant or the density will remain constant. The former situation

may be plausible when the plasma is near its MHD beta limits. The values of %/av for

various values of T are shown in Fig. 11. The solid curves correspond to constant plasma
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density with T = 10, 15, and 20 keV. The dashed and dotted curves correspond to the

case of a fixed plasma beta of 3%, with T = 15 and 20 keV, and the case of fixed density,

respectively. Substantially increased growth rates relative to the real frequency occur at
q

higher temperature in both the constant-density and constant-beta cases.

The most important conclusion to be drawn from the work described in the present paper

is that the interaction of the low-mode-number toroidal Alfv6n eigenmode with the contin-

uum, which is especially like to occur near the plasma periphery due to density variation,

leads to dissipation and wave damping. Such continuum dissipation can significantly reduce

the growth rate of the alpha particle-destabilized TAE modes. A weakened TAE instabil-

ity would imply lower wave saturation amplitude levels, which in turn would imply better

confinement of the hot alpha particles that fuel the thermonuclear plasma ignition process.

To date. the only estimate of the nonlinear saturation level of the TAE wave amplitude

is the analytical prediction that was derived by Berk and Breizman 11 with the use of wave
4

trapping arguments. Their theory indicates that the saturation amplitude of the perturbed

magnetic field, _B, scales as a fractional power of the ratio of the linear growth 7L to

the dissipative damping rate Td" viz.. for typical parameters, 3B/B _. 1 × lO-5(TL/Td) 2/3.

Clearly, it may be expected that the significant dissipation produced by the continuum

resonance interaction would tend to reduce the saturation amplitude and. consequently, the

threatening nature of the TAE instability. More detailed comparison with theory and also

numerical simulations of the TAE nonlinear behavior are called for. Already, computational

studies 1° of alpha particle orbit confinement in the presence of a TAE wave, albeit nonself-

consistent, are exploring how the alpha particle confinement time varies with the specified

amplitude of the wave.

We emphasize that in the present paper we have carefully studied only the n = 1 TAE

• instability. Higher n-numbers may cause more severe instability, particularly if the gap

structure is such as to avoid any Alfv6n continuum resonance damping, as indicated in
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Ref. 22.

Further investigations are needed with realistic MHD codes for proper calculation of the

continuum resonance and the frequency gap structure, which we have observed to be sensitive

to details of the profiles. When only a single resonance point is present, the Alfv6n continuum

resonance damping contribution can readily be incorporated into these large codes by means

of the theory developed in the present paper.
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Appendix A" Hot Particle Response

Here we solve for the alpha particle kinetic response and show how to obtain an analytic

, estimate of the alpha particle-induced TAE growth rate.

The alpha particle kinetic response enters the eigenmode equation through the pressure

perturbation, as may be seen in Eq. (7). For an anisotropic plasma, the equilibrium pressure

can be written in the form

P = pllbb + p±(]- bb) (Al)

where Pll and p± are the components of the pressure tensor P along and across the direction

(specified by the unit vector f)) of the equilibrium magnetic field B = b B. The perturbed

pressure is then given by

.... 0 (pll- pi)
6P = 6pllbb + 6pj.(I - bb) + 6BII_--_ P + B= (B6Bi + 6B-B) (A2)

where the perturbed pressure components 6plI and 6pi are given as kinetic integrals over the

perturbed distribution function Sf:

5pl,=m f d3vv Sf , 5pi = f d3vBf (A3)

From Eq. (A2) we can then obtain

1 4- _ (pi - PlI)] _ x V. 6P = _ (Spll- 6p!)(f) x _) + -_(g x V6p,_)4r, b 1 1

_ B2 (f) x _)+ B2 -_ x [V(B6BII ) - 47ri_,6v£] (A4)

In the low-beta limit of interest here. we neglect the terms 4r,pll.i/B: << 1 and set 6BII --, 0

• in Eq. (A4), so that we have

(b ) ((Vxf)) (f) x VB) Dr). V x 1_ ]V/. -_ x _ •6P _- V • B 6NII+ B 2 5Pi + B (Spi - 5Nii) (,ikS)
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On the other hand, using VD = (vll/wc)V X (bvll) where the gradient is performed with the

energy and magnetic moment held fixed, we find the exact relationship

e/d3vvD._75f=c_7. [(_Tx_) (b xX_TB) ]B 5Pl[ + B 2 Sp± . (A6) ,

Hence, neglecting the parallel gradient in the last term on the right-hand side of Eq. (A5)

by virtue of our large-aspect-ratio ordering, we obtain Eq. (8) of the text, which relates the

macroscopic pressure perturbation to a kinetic integral over the perturbed distribution func-

tion. A sum over particle species is implicitly understood on the left-hand side of Eq. (A6),

although in this appendix we will focus on the kinetic response of the alpha particles.

We first consider the equilibrium distribution function F, which satisfies the steady-state.

zero-electric-field form of Eq. (3), viz.,

(t, llb' _ + v D • _')F -- 0 . (AT)

For small gyroradius, the solution for F can be expanded as F = F0 +/:1, where b. _'F0 = 0,

so that F0 = Fo(W,_.,#) has spatial dependence only through the poloidal flux w, and where

F1 satisfies the equation

vllg. VF1 + VD' VF0 = 0 . (AS)

The importance of the toroidal correction F1 has been pointed out in Ref. 11. where it

was shown how, in large-asp,ect-ratio tokamak geometry, Eq. (AS) can be integrated for a

low-beta plasma to give

OF0 + S0)
F1 - vDo qRo , with vDo = (A9)

vii 0r ' _ Ro

Actually, Eq. (AS) has an exact solution. Introduce flux coordinates (_', 0, (,'), in terms of

which the magnetic field is given as B = V(,"x V_, + (G/a)V(,, where (,"is the toroidal angle

and t:, the poloidal flux" recall that in an anisotropic plasma, the quantity G(w) = crRBt is a

flux function with _r = 1+4rc(p±-pll)/B2. In these coordinates, since B.VF1 = J-'(c)F,/O0).
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with J = (B. V0) -1 = IVv> x V0. V_] -1 the Jacobian, and since V. [vll(b x VFo] =

J-I(O/OO)[(vIIG(_)/aB)(OFo/O_)], we can immediately integrate Eq. (A8) to obtain the

solution:
v

v,,
In Eq. (Al0), the constant (with respect to 0) of the integration has been determined in

terms of flux surface averages from the condition that F1 contribute to no alpha particle

accumulation on any flux surface. (Stated more fully, the alpha particle fusion source depends

only on flux surface, not on poloidal angle. Because the alpha particles that can reach and

thus are counted on a given flux surface are, to lowest order and for given E, #, and sign of

vii , born with equal probability on equidistant inner and outer flux surfaces, the-change of

the flux-surface averaged alpha particle distribution function due to finite-orbit width effects

must be second order. Hence the poloidal average of the first-order change, F1, must be

zero.) In the limit of low beta and large aspect ratio, with the use of Eq. (21), it is clear

that Eq. (Al0) reduces to Eq. (A9). The form of Eq. (Al0) shows that the total equilibrium

distribution function, F0 . F1, is a function of the toroidal canonical angular momentum

p( o< v.,- (Mc/e)Rvll; hence the part designated F1 describes radial excursion and finite

banana width effects.

Next, the solution for the perturbed distribution function is required. Linearize the drift

kinetic equation of Eq. (3) with f = F + _f, E = 6E, and B = B0 + _B (henceforth we

suppress the subscript on the equilibrium magnetic field), where the perturbed magnetic

field _B is related to the perturbed electric field 6E by Ampdre's law as

iw6B = cV x (b6Eii + 6Ej.)

=(fVE-V)B+B(V.6vE)-(B.V)6vE-f,x V6EII+fEII(Vxb). (All)
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Using the vector identity

V D ' V(SV E • VF) --SVE. V(V D , VF) = [V x (6VE x VD) -- 6VE(V • VD) -11-VD(V. 6VE) ] • VF

(Al2)

we can write the linearized drift kinetic equation in the form

-. e OFo( w, )(-iw + vllb . V + vm . V)gh + M Oe 1 w (VllgEII + vm " 6Ez) + R = O (Al3)

where 6h = 5f- 6rE" VFo/iw and where the diamagnetic frequency w. is defined as

eB/ \_ (g × V_)).V. (Al4)

Equation (A8) was used in the derivation of Eq. (Al3), and, as a consequence, the gradient

operator in w. does not operate only on the electric field, gE±, in Eq. (Al3) -- contrary to

the assertion in Ref. 27 -- but also on the drift velocity VD. The quantity R in Eq. (A13)

. consists of several terms"

R -'- 1 (V D • 6E±) 27 X _" " rF0 - (V. VD)(6v E • VF0)" zo,)

-- (6VE • V)ln (VD.VFo)+(6VD.VFo) (Al5)
+ v_ j _ "

If we adopt the frequency ordering w _ Vllf). _' >> VD' V, then all the terms in R are

small, on the order of ]VD-V /w << 1, and may be neglected in Eq. (A13). Finally, go to

the large-aspect-ratio limit, for which vii can be taken to be approximately constant and for

which, with the assumption of low beta, we have

+
VD "_ --vDo(?sin 0 + 0 cosO) , with L'DO = R0wc (A16)

In this limit, we introduce the Fourier representation 6h(r, O,C, t) = _,_ 5h,_(r) exp[i(-mO +

n_" -wt)] and obtain the solution for the poloidal components 5hre of the perturbed distri-
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bution function as follows:

w - -_ q(r) . n 6hre = 2M Oe wcvc rot Or r

(0..1)- _rr + 6_m+_ . (117). r

Now use this solution for the perturbed distribution function to evaluate the kinetic

contribution to the quadratic form, viz., the second term on the right-hand side of Eq. (57)"

/o a 47riweo/ dar /d3vgfvD.SE,i _--_ dr E* (w)Lk Em -" c2 4r, 2 Ro •m

/o./[( )(0.+1)- c2 _ r dr d 3v vDo 6fm Or r r
tri

(-" /_- i ,, a_e. r dr dJVV2DoWm (Al8)
Ma c2

with

( ) ( )]I.Vm= 0Fo (m+ 1) C)Fo 0 (rE._)-mEm 6 a., vii m. 1

o,o,.,,0,o)10_ .[ (v.,"-' )1+ \ Oe _,o tor -_r (rEm)+ mE. 6 _, Ro q(r) + n (A19)

In the last step of Eq. (Al8), we dropped the coupling to the m_2 Fourier components: kept

only the resonant part of the kinetic integral, which will contribute to growth or damping of

the wave: and replaced 6f by 6h, since the difference does not participate in the wave-particle

resonance. Equations (A18) and (A19) agree with the result of Ref. 11 when a,' << w._.

For the alpha particle distribution function F0 in Eq. (ALS), we will use the classicalw,

steady-state "slowing down" distribution, 43 isotropic in pitch angle, which is given bv

• S(_)¢.
. F0(r, v) - 4Tr(v3 . v3 ) H(v,0 - v) . (AZO)
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9¢ is the velocity that corresponds to the alpha particle birth energyHere v_0 = (..,_o/M_) 1/2

g_o, and H(v_o - v) is the Heaviside function. The velocity vc is given by

Mc 1 Z,2 Ni In A; (A21)
vc= Ncln Ac . Ai vc ,

with vc = (2TcMc) 1/2 the electron thermal velocity, Mc the electron mass, M v the proton

mass, ,4; the ion atomic number, Zi the ion charge state, Ni and Nc the ion and electron

densities, and the Coulomb logarithms

in Ac = 23.9 +In (_,_) (A22a)

lnA;=14"2+ln[(_-_) 1/2 (AoA_Aiv_°+Ai) (A22b)

with :Ft in units of eV and Nc in cm -3. The slowing-down time rs is given by

3

• 3 Mc M_ vc (for Zo = 2) (A23)r,= =6.30 xl08 T_/P
• 16 v _ Z_ e4 Nc In Ac Nc In Ac

and can be rewritten in terms of the velocity vc as follows"

2 e_,Ni In Ai
r; 1 =_ 47reo o (A24)

, Mi _[_ t,3

Note that the number density of the slowing-down, non-thermalized alpha particles is given

b\"

_,_(r) / d3vFo(r,v)S% ln[l+ (v_°)3; ( "_3 \ vc \ vc /

For an equal mixture D-T ignition plasma (for which g_o = 3.5 MeV and hence V_o =

1.3 x 109 cm/s), the alpha particle source rate S is given by S = t_TD _r r (O'V)DT, with (O'V}D T

the reaction rate 44 for the production of alpha particles and ND and NT the deuterium and

tritium densities. Some useful values for the reaction rate 44 (crV}DT = 1.1 x 10-16 cm3/s for

7', = 10 keV, 2.6 x 10-16cma/s for Zi - 15 keV, and 4.2 x 10-16cm3/s for Ti - 20 keV.

Also, when Tc'= 10 keV and Nc = 10TM cm -3, we find In Ac = 17, In AD = in AT = 24,
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v, = 5.9 x 10e cm/s, v, = 4.5 x 10s cre/s, and _', = 0.37 s. For the sake of comparison, when

B = 5 T, we have VA = 6.9 x l0 s cm/s.

Let us now approximately evaluate the alpha particle-induced growth rate from Eq. (Al8)

" for the TAE mode with n = 1 that couples rn = 1 and m = 2, using the slowing-down

distribution function of Eq. (A20). We simplify Eq. (Al8) by assuming that the major

contribution to the radial integral arises from the vicinity of the gap region, at q = 3/2,

where OEm/Or I is peaked, and by evaluating all slowly varying quantities at the gap location

r = rg, such as the Alfv6n velocity vA(r) --, VA(rg) = rAy for short. In the same spirit,

we take a _ VAg/3Ro, which is the frequency at which Iktl,m=l]2 = Ikl!,m=22 where the

cylindrical continua cross each other. Then, we note that the rn = 1 mode contributes to the

wave-particle resonance delta functions in Eq. (A19) when either vii = --rAg or vii = VA_/3,

whereas the m = 2 mode resonates when vii = rag or vii = --rAg/3. For simplicity, we will

neglect the lower velocity resonances at vii = __rAg/3, since when V_o > rAg, the particles at
,4

velocities vii I _, rag3 tend to be toroidally trapped, whereas Eq. (A19) accounts for only

the circulating particle effects. Now, define a measure of the alpha particle beta value as

follows,

3Bg = + T,) 5;,, (a26)
where 3 = 8_ N,(T, + L)/Bg is the beta of the background plasma at r = ra. Note that

when v_0 >> v:, 3_ approximates the exact expression for the alpha particle beta value.

Sr, j/o_ davMov 23_ = 3Bo2 F0(r, v) . (A27)

Also. define the alpha particle diamagnetic frequency in the same limit as follows:

,2 0 )
- (a2s)

" _*° = 2_.,_ _ "

Then, with the simplifications noted previously, we reduce Eq. (Al9) to the following form:

/ _o" { (_2 bE. 3E.') .
i y" dr E*(a,,)Lj¢ E. = i 9- w drra_" -P" + W +m 4 vooRo r
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The velocity integrals Po and Qo are given.by

w

i (I+_i)_ i _(i+ #)_
= g i+ x_ + 3 A dx (x3+ z_)2 H(I - ZA)

1 x_ t- 1 --XA 3 ]- 2 z_+:_ -Z_Io+z_I, H(1-z,_)

_ 3I [I + XA(I -- XA)] H(I - xx) for xc << x_ A30)o

and

F1 da _ 6( )Fo

- Z' ms(1 +_)2_-- 1 H(1--XA) dx x 3 + x_8 A 3

= 2--4 1 -x_+6x_(l --ZA)--x_ \x- 3_.x3 -6x_x) Io+3Z44Ix H(I--zA)

--- _[1 o o]I+Z'A(6--4XA--3x" A) H(1--xA) for xc<<x _ (A31)24

with H(_) the Heaviside step function and with

j/x I XtIe=o,l= Adm,za + z_

[ ]1 1- 3 v_arctan 3x_+(0 zc)(2zA xc) 8(-1)eln " "-- - - ',XA + Zc l - xc+ x_

3 •

----,2e-'(x_-2-I) for z c <<x_ (A32)
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and x = v/voo, XA = VA/Voo and xc = vc/v_,o. Finally, we insert the result of Eq. (A29) into

Eq. (63), neglecting the continuum damping term on the right-hand side of Eq. (63), which

has already been perturbatively evaluated in Sec. IV. We use the peakedness approximation

OEm/cgr I >:_ IE,_/r I and also use Eqs. (80) and (83) to obtain the following result for the

alpha-particle-induced growth rate of the n = 1, m = 1/m = 2 TAE mode:

(27r'_ ,_x H(1 ZA) --[1 +XA(1 Zm)]+-_ -- A-- (A33)\--7_), A - - _'

for • 3x c <<_x3. Recall that 3_ can be exprcssed in terms of local plasma parameters given by

Eq. (A26). Plots of the functions 3XA P_(XA) and 10XA Q_(XA) are given in Figs. 12(a) and

12(b).
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Appendix B: Proof of the Positivity of the

Continuum Damping Rate

In order to show from Eq. (63) that the Alfven continuum resonance always leads to a

damping contribution, since we already know from Eq. (60) that _oXOG(wo, E_))/Owo > 0

holds, it will suffice to prove the following inequality:

i OIID(_,_,,+)I Z Dm"( _'' )C_)(r+,J) C(_°)(r,,J) > 0 (Bl)2:, 0--2,, _'̀ j "
"0% ,rI

The proof is as follows. Consider the following quantity:

0 [D'_"("'r)]A_(r) (B2)n,m

for arbitrary real. nonsingular functions Am(r)and arbitrary real frequency ..'. with D.,_ the

matrix elements defined in Eq. (53). Since h'(_,r) can be explicitly written in quadratic

form as

_2" d___001K(_.',r)= 27r t,_ (1 + 2gcos0) Amexp(-irn0) + _ k_---_(.4._)_" (B3. til

we immediately observe that K(..', r) is positive definite for _"< 1/2.

For the functions Am(r), it is allowable to take the specific choice of

Am(r) = _ D_P(_' r)(7'(°)(r) (B-I
p

where .., is the real, discrete eigenfrequency of a TAE mode and the corresponding "flux"

functions C_°)(r) are related to the real TAE radial eigenfunctions through Eq. (52). Here

D mp denotes the cofactor matrix elements, which satisfy Eq. (55). We proceed to substitute

Eq. (B4) into Eq. (B2) and then manipulate the expression for h'(_,r) as follows"

0 Dmn(w,r) An(r)o < K(._,_)= F_.A.,(,-)_
7q'l , n

0 D._.(_.', r) ]m ,n p ,q
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rn .n p,q

---_,,_,_,,zo_,_o)_o,_-,,°_,_,,z[i__,_1_o)_o)_
[1o ]• = - _ IlO(_, r)ll _ DqP(w, r)C_°)(r)C_°)(r)

p,q

P,q

In the preceding, we have used the symmetry of the matrix elements (Dmn = D,,,) and

contracted the Dmn and cofactor D pq matrix elements in accordance with Eq. (54), with

][D(_'. r) [[ being the determinant of the matrix whose elements are Dmn.

Finally, we evaluate the final expression for I((w,r) given on the last line of Eq. (BS).

at any continuum resonance point r = v_,j(w) for the frequency _'. At these points the

determinant vanishes by definition: [[D(_,:.r-_,j)[[ = 0. Consequently the second term on the

last line of Eq. (BS) disappears, whereas the first term when evaluated at v = v_,j is nothing

more than the quantity on the left-hand side of Eq. (Bl). The inequality in Eq. (Bl) is thus

demonstrated, which establisz_es our assertion that Alfv&n continuum resonances always

contribute to wave damping.
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Appendix C: Evaluation of OG/Ow

Here, a method is described for modifying the frequency derivative of the principal value

function G(w, Eta), so that the apparently divergent integral in Eq. (95) is avoided. The

result for the case without toroidal coupling is explicitly presented, and the appropriate
m

generalization to the case with toroidal coupling is indicated. In particular, a useful form

for the three-mode coupling problem is given.

The essence of this improved treatment is the retention of higher-order terms in the dis-

continuity in the wave function at each continuum resonance point. To illustrate the method,

we neglect toroidal coupling and assume the existence of only one continuum resonance point,

at r -- r_, where w2 = Ic_(r_)v_(r_) is satisfied. From Eq. (39) without the alpha particle

kinetic destabilization term Lk, the quadratic form for the cylindrical problem is given by

the following expression:

1( )[ ) 1 ()}(/0
= -[z_(_, + ,_)- _m(_,- _,)]c_(_,) + _(a)C_(_) (C_)

in the limit where r/1 and 7?2 ---, 0, but with the ratio rh/r/2 arbitrary. The expression

on the left-hand side of Eq. (C1) is the quantity G(_,',Em) that was previously defined in

Eq. (42) for the case when rh = 772,in which case the standard definition of the principal

value was employed. However, we note that it is not necessary to have rh - 7/2in order for

G(_,E_) to be well defined, and indeed in the discussion that follows it will be convenient to

exploit this freedom. The eigenmode Em obeys the boundary conditions that Em(r = 0) is

regular, that Em(r = a) - 0, and that Cre(r) is continuous at the resonance location r = r,.

However Era(r) is discontinuous at the resonance r,. In Sec. IV we found, for the case when

rh = r/2 = 77,that the discontinuity in Era(r) at the resonance r_ is determined from causality
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to be

Cre(r,)
Era(rs + 77) - Era(rs - 77)= -i_r sgn(w) (C2)

!( )1
This result was obtained by integrating the equation for E,_(r) in the complex plane from

rs - 77to rs + 77along a contour on which Im(w/v_ - k_m/w ) > O.

• As discussed in Sec. IV, the solution proceeds perturbatively by writing a: = a_0+ 6w and

Em= E_ / + 5Eta. The zeroth-order eigenfrequency w0 and the lowest-order eigenmode E_ /

are obtained by integrating the mode equation from the magnetic axis to the edge of the

plasma, with E_ I regular at the origin and vanishing at the edge, but with E_l(rso + r/o) =

E(,_°,)(rso- rio) for r/o/rs0 << 1, where r = rso is the resonance location corresponding to the

frequency ,so. The jump in the true eigenfunction Em near the resonance point is contained

in 5Eta. We then evaluate Eq. (C1) for ,z = _s0+ 5a., and E,_ = E_ ) + 5Eta, neglecting terms

that are quadratic in the perturbation quantities. In the same manner as described in the

text, we integrate the terms linear in 5E,, by parts and use the fact that E_ ) satisfies the

eigenmode equation for ,: = _o. We then obtain

&., 0a("_°' £'_)) =[SEm(r,o+rlo:,:o+&.,)-SE,_(r,o-rlo:,:o+5_')]C_l(rso) (C3)
(Sw0

where the sign of the discontinuity term on the right-hand side of Eq. (C2) has switched sign

relative to that on the right-hand side of Eq. (C1). The notation 6Em(r,o + r/0;_so + &.') is

used to emphasize the implicit frequency dependence of the solution. The quantity OG/O_Zo

is given bv the following expression Icf. Eq. (45)]"

.o+,o \vs/ \ dr +r(rn2-1)(E_))2

- }. (c4)

Notice that in Eqs. (C3) and (C4). we have exercised the freedom associated with r/_ -¢ 77.

by choosing r]l = rio + 5a_(Orso/O,_o) and r/2 = 77o- 5_(0rso/0,_0). As was pointed out in
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Sec. VI, there is a difficulty in that the quantity OG/Owo of Eq. (C4) is a divergent integral

in the limit when rio ---+0, since [dE_I/dr] 2 c¢ (r-r,o) -2 near the resonance point. However,

we now show that this apparent divergence is removed when corrections to the discontinuity

in the wave function are retained.

Near the resonance point r = rso, the differential equation for Era(r) is approximately
o

given by

w_ rs0 + (r - r_0) dE,,

The solution of Eq. (C5) allows a "large" solution that is logarithmically divergent at r =

rs -_ r_0 + 5w(0r,0/c3w0) and also a "small" solution that is constant. Note that 0rs0/c3w0 =

-(2wo/v_) _ - k_ = (2/_'0)[d ln(k_m v_)] -1 . The mix of the two solutions
. 771 r...r s0 _'--'r s0

is implicitly determined from satisfying the boundary conditions at r = 0 and r = a. Near

r = re, the solutions are specifically given as

Era(r)= ln(r-%)+A+(_o+hw) , for r > rs (C6)

. -
rjO

and

Cm(r,o)
{In(r,-r)+,_-(_o+SW)} ,forr < r,. (C7)

By virtue of the construction of the lowest-order eigenfunction E_ }. we have A+(_0) =

--%-(-_0). In Eq. (C3) we need to evaluate, for ,_ = ,_0 4-Sw. the following discontinuity:

5Em(r_o + 77o)- 5Em(r,o - rio) - Em(r,o + rio) - Em(r,o - rio)

( o.o ( o.o= Em r,+_o-ha: 0_o) -Era rs-rio-&: OWo)

/0r,o) [OEm(r, +rio) OEm(rs -rio)-_ [Era(r, + 77o)- Em(r_ - rio)] - &: \ &Oo Or - Or (CS)
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where we assumed ]6w (a_-r-a_\ O_o//77ol <<1. Then from Eqs. (C2) and (C4), we obtain

6Em(r,o + %) - 6Em(rso - r#o)

= -i_ 46_ _o c_(_,o) (c9)

The i_r term in Eq. (C9) has already been exhibited in the text Icf. Eq. (50)], and the term

with 46w/_o is an additional contribution that is needed to cancel the divergence in 0G/0wo.

When we introduce the result of Eq. (C9) into Eq. (C3), we obtain

5_, 0G(cz°'E_))=-i_" _ sgn(_o) [C_)(r_°°)]2 (el0)

O_o ; _,o,_._ _-<_
rs0,3

Equation (C10) yields the same result for the continuum damping rate 7 = Im(6_) as that

given in Eq. (51) in the text, except that OG/Owo is now replaced by the quantity 0G/0_'o,

defined as follows"
t.

= ) lt

L_,, \'_A u /J
"r-"r sO ,3

where we have added the possibility of having multiple resonance points rso,j.

We can readily verify that lin%o_.O[0G(wo, E_))/0wo] is well behaved, albeit no longer

intrinsically positive definite. By using the identity

2f,,o,-_o, dr f_ dr ar/oi _o (_ 2 + (_ _ _,o,j)2 + (C12)-- r_o,j) .o_+,7oj r_o,j(a -- r_o,j)

we can write the quantity cOG(._o,E_))/OWo in the following form:

" O_o _o,,o ,o+.o t,%r) d,-

• _ ( _o ) [c_'(_,o,_)]_-z. - _,o,j_(_o,j) _ k_m3

r sO , 3
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,(1)}+ _ (_- I)(E_)_-_o__(E$_)__

2a ( _o ) [C_)(_,o,_)]_
rsO,3

In Eq. (C13), note that the (r - rs0,j) -2 divergence arising from the [dE_)/dr] 2 term in the

integrand is exactly cancelled by the second term, leaving only a principal value integral,

which is well defined. Therefore, the quantity OG(wo, E_)/aWo in Eq. (47) should more

accurately be replaced by the quantity OG(wo, E_))/Owo of Eq. (C13), which is not divergent

as r _ rso,j. In fact, it is important that in Eq. (C13) the contribution from the resonant

region be small compared to that from the region around r = rg (where the gap mode is

localized). The reason for this is that we have developed a perturbation theory in which the

contribution from the integral near the resonant region is assumed to be small.

- Incidentally, we note that by expressing the discontinuity of E,_ about r_ in terms of _+

and ,X- with Eqs. (C6) and (C7), we obtain the identity

OG(_"°'E_)) = lim [_+(wo + 6w) - Ax-(_o + _,) [C_)(r_o)] 2

rjo

_ [c_)(_o)]_ o

In practice, the principal value integral in the expression of Eq. (C13) for c)G(wo, E_))/O_o

is difficult to integrate numerically because it contains relatively delicate cancellations. Also.

the expression given by the right-hand side of Eq. (C14) is not convenient to evaluate.

because of the singular nature of the differential equation near the resonance. A more

convenient way to evaluate OG/Owo is given by another approach, which is based on our

. numerical method for searching for the eigenvalue as described in Sec. VI. In our method

of solution, we solve the eigenmode equation given by Eq. (36) with the requirement that
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Era[rs(a:) + rp] = E,,[rs(w)- q], so that E,,(a;c0)is nonzero, unless w = w0 for which

Em(a;a_) = 0. Here, the notation E,,.,(a;w) is introduced in order to emphasize the depen-

dence of the solution on the (real) frequency shift. Using Eq. (C1) and taking into account

• the nonzero endpoint contribution at the edge, one can straightforwardly show that

OG(w°'E_)) = - lim Em(a;a_0 + 6w,.)C,,(a;wo + 6w,.) . (C15)
" 0w0 6_ --o 6w,.

This result is extremely convenient, since our search routine for (zo solves for Em(a;co).

When toroidal mode coupling is present, Eqs. (C13) and (C15) have appropriate gener-

alizations. It can be shown that

rn ,t

C(O)(r.j)D_(,_, ° ..--,,o) a
- _ -" , _ ,

,,,,-,,,., [(,.-,..,, v(++o,,".)i

0

_ _ a CLo)c+.+)D._(+o,_.)c+)(+++) O__l_,olD(+o,,. ) In,m,: r+j(a - rs:)

= __, OEmCa'_.')C_)(a) " (C16)c%:
rn

Vv'ealso note that the quadratic singularity cancels at r = rs3 for since D(_so, r_j)l [ = 0. we

hav e

8 C')

Z D+_(_o,_.) 0.L-_,° Dm"(_°'_-)D"'(_°'_') = D"(_'o,_. 0--ZT0ID(_o._.)rr'_ ,rr

For the three-mode coupling problem, we represented E,, and C,_ by Eq. (89). The e,

were so chosen that El(a) = Ea(a) = 0, and E2(a) - 1E(_')II,with I E(_ given bv Eq. (92).

• Thus. Eq. (C16) becomes

0 0 E(_)II
-- (]"(u.,,o,E (°)) = - C_°)(a) (C17)
0_o 0..'
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0
and _ lIE(";) [ is readily determined as a numerical difference.

Finally, we note that, although the amended form of cgG(";o,E_))/O,;o as given by

cgG(";o,E_))/O";o either in Eq. (C13) or in ]_q. (C16) is non-divergent, it is no longer positive

definite. However, we note from Eqs. (15) and (16) in the text that the imaginary part of

the energy functional Q(";,6_) is positive definite for "; in the upper ilalf-plane, as long as

6I,V > 0. For an unstable root to exist, G must vanish in the upper half -;-plane; however,

since G = ";Q and Im Q > 0 in the upper half plane, there are no unstable roots. Therefore,

the conclusion that continuum resonance leads to damping when the system is MHD stable

must hold.
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Appendix D- Alternate Method for Estimating the

Continuum Damping Rate

The method described in the text for estimating the damping rate assumes that the eigen-

function is approximately real. This assumption can fail particularly when there are multiple

" points along the real axis where an Alfven continuum resonance occurs for real a_. Then, at

each such point, a complex discontinuity in E,,_ is induced, and it can arise that the accumu-

lated imaginary part of the eigenfunction may not be ignorable between singular points. To

deal with this possibility, we now suggest an alternate method for estimating the damping

rate.

If ,.' is reM, we can integrate Eq. (35), ignoring Lk(aJ), with the assumption E_(r) and

C,, (r) are complex. At the origin we take regular boundary conditions as given bv Eq. (10),

with E_)(r) and C_)(r) real. We then integrate to just before the first singular point r = r_.

where IID(_, r_)l = 0. We now use the causality condition given by Eq. (62) to connect the

amplitudes at r,_ + r/ to those at r,_ - 77:

C_)(r_, + 77)= C_/(r,_ - 77) (D1)

(0IDI) Dm-(-i_r sgn _'. r_l )C_i)(r_l)
(D°_)

3 _ OT'sl

\Ve can thus continue the integration, with E and C now complex. Note that subsequent

integration of the differential equation induces an imaginary part in C from the imaginary

" discontinuity that is given in Eq. (D2). At each successive singularity, a discontinuity is

induced as given by Eqs. (DI) and (D2) (with r,j replacing r_), but now with C(_)(r,j) and

E_l(r,j - rr) being complex. We integrate these equations to the boundary r = a where we

attempt to satisfy the boundary condition E_(a) = 0. An appropriate solution should have
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the form of Eq. (91) (but now with ei(w) complex), which leads to the dispersion relation

given by Eq. (92)

[[E(_o)[[ = 0. (D3)
$

Now in general [[E(co)[[ is not real for real co, and it will not have real eigenvalues.

However, I[E(_o)[[ is an analytic function of co, and its zeros are in the complex plane where

Imco - _ < 0. If 7 is sufficiently small, we can obtain an estimate of 3' as follows. Let

lE(co)li- _R(w)+ i_i(_) (D4)

where _n(co) and _=I(co)are both real functions of w. Let _oo be defined as the real frequency

for which

_n(coo) = 0 . (DS)

Then. if we take x = _-'0+ i7, by expanding in a power series and neglecting higher order

terms, we obtain

" _I(co0)

7 =- 0_R(_o)/0_o " (D6)

• The conditions for neglecting higher-order terms of the power series are

]_I(_o)O2_R(_°) 0_1(w0)C)_o O_o
2 , < 1. (DT)

(&R(coo))090 &R(_0)O._o

In Fig. 13 we compare the damping rates computed using both the method of the text

(solid curve) and the method described in this appendix, for the density profile given in

Eq. (98) and for the parameters stated thereafter. There is verb' good agreement between

the predictions of the two methods except in the vicinity of q(a) _ 3. In this case the

alternate method generally gives a larger damping rate and is more credible.

We also tabulate in Table II the parameter

0_R(_0)
_t(_o) 0_

- CgSR(_oo) (D8)
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as a function of q(a). According to Eq. (DT), This quantity needs to be much less than

unity in order to justify the damping rate estimate. We see there are regions in which the

validity of our estimates appears to be marginal. In these regions the damping rate seems to

have a larger value than in regions where the theory is valid, and hence destabilization from

alpha particles is less of a concern. However, if the correct damping rate is desired in these

regions, one should either develop a code that can integrate in the complex r-plane along a

contour on which Im X ID(a_,r)ll > 0, or use a code with additional physics included, such_d

as resistivity. Such an extension of this problem is not investigated in the present work.
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Table I

Nominal Parameters of Experimental Machines

TFTR CIT ITER

R (m) 2.5 2.1 6.0

a (m) 0.8 0.65 2.15

B (T) 5 11 4.85

n¢ (m -3) 1 x 1020 4 x 1020 1 x 102°

T (keV) 10 10 10

0.032 0.026 0.034

air 0.32 0.31 0.35

';3_ 1.9 x 10-3 1.5 x 10-3 2.0 x i0 -_

p_,/a 0.094 0.31 0.036

VA
XA = _ 0.53 0.58 0.51

• VA/3Ro (kHz) 9.2 x 102 1.2 x 103 3.7 x I0_
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Figure Captions

1. (a) Formation of Gap Due to Toroidicity. The dotted curve represents the Alfvdn

resonance frequency as a function of radius for the n = 1,m = 1 and n = 1,m = 2

modes, which intersect where 1 - 1/q(r) = -1 + 2/q(r). The solid curve represents

, the frequency spectrum with the effect of toroidicity included. With toroidicity there

is no intersection; instead a gap arises between the ,;+ and ,;- branches. Away from

the gap region, the predominant m-number of the resonance can be identified. Here

f_ = _Ro/vA(O), a/Ro = 0.25, and q(r) = 1 + r2/a 2.

(b) Eigenmode Structure of the TAE Mode. The structure of the global mode ampli-

tude as a function of radius, for the parameters given in Fig. l(a). The eigenfrequency

is f_ - 0.31.

2. Gap Structure with Satellite Resonance. The density decrease at the edge of the

plasma causes an additional resonance to arise near the plasma edge. The solid line is

the global TAE eigenfrequency. The resonance at the edge can cause intrinsic damping,

as described in this paper. In this case q(r) = 1 + 1.3 r2/a 2.

3. Muhiple Gap Structure. Two gaps can line up, which can cause multiple mode struc-

ture. For this case q = i + 2 r2/a 2. The solid curves indicate the global eigenfrequencies

that were found.

4. Discontinuity Parameter. Plot of the discontinuity parameter cr as a function of edge

q(a) for fiat density profile, with fi = 1/3.

, 5. Comparison of Analytic to Numerical Eigenfrequencies. The short solid lines indicate

the predictions of analytic theory for (f_- f_o)Ro/a. The numerical curves, with the

" indicated edge-q values; approach the analytic results as a/R_ --_ O.

6. Flux Factor Ratio (C(rs)/C(rg)) 2 The ratio of [C2(rs)/C2(rg)] _ is plotted as a function
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of edge q for the density profile of Eq. (78). The dashed curves are numerical results for

different values of the aspect ratio, whereas the solid curve is the prediction of analytic

theory for a/ R --. O.

7. Eigenfrequency and Damping Rate. Eigenfrequency, 12, and damping rate, 7, as a

function of edge q, with a/Ro = 0.25, for three density profiles: (a) the density profile

of Eq. (78); (b) the density profile that decreases slowly in the center and rapidly at

edge, as described in the text prior to Eq. (98); and (c) the density profile given in

Eq. (98).

8. "Smooth" Density Profile. The normalized density profile g(r) of Eq. (98), with A1 =

0.2 and A2 = 0.05.

9. Double Gap Alignment. Plot of the Alfven resonance frequency for the density profile

of Eq. (98), the parameters of Fig. 7(c), and q(a) = 3.165. The gaps for m = 1,2 and

m = 2,3 align, and two global TAE modes are found at Ft = 0.389 and Ft = 0.313,

Here 51 = 0.2 and _2 = 0.05.

10. Eigenfunctions for the Double Gap Alignment of Fig. 9. (a) The amplitudes Em and

for = o.389;(b) En and Cm for f_ = 0.313. Note that the Cre(r) plotted in these

graphs is actually the Cre(r) of the paper multiplied by R20.

11. Sensitivity of Alpha Particle Growth Rate to Scale Length. The alpha particle growth

as a function of ,_._/w for different temperatures. For typical reactor parameters

(described in the text) _s._/,_ = A/t_, where g_ is the alpha particle scale length at

the gap position r = rg, and the value of A is device-dependent, as given in Eq. (99).
t

The solid curve is for constant density, whereas the dashed and dotted curves are for

a constant plasma beta of 3%.
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12. Plots of functions appearing in alpha particle drive to growth rate: (a) 3XA P_(XA);

(b) lOzAQo(XA).

13. Comparison of the damping rates calculated with the modified method of Appendix D

(dashed curve) and with the method described in the text, (solid curve), for the pa-

- rameters given in Fig. 7. The two results agree extremely well if only one resonant

point is present, whereas there is significant deviation when more than one resonance

point occurs.
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