4,575 research outputs found

    Causes of Stillbirth and Time of Death in Swedish Holstein Calves Examined Post Mortem

    Get PDF
    This study was initiated due to the observation of increasing and rather high levels of stillbirths, especially in first-calving Swedish Holstein cows (10.3%, 2002). Seventy-six Swedish Holstein calves born to heifers at 41 different farms were post mortem examined in order to investigate possible reasons for stillbirth and at what time in relation to full-term gestation they had occurred. The definition of a stillborn calf was dead at birth or within 24 h after birth after at least 260 days of gestation. Eight calves were considered as having died already in uterus. Slightly less than half of the examined calves (46.1%) were classified as having died due to a difficult calving. Four calves (5.3%) had different kinds of malformations (heart defects, enlarged thymus, urine bladder defect). Approximately one third of the calves (31.6%) were clinically normal at full-term with no signs of malformation and born with no indication of difficulties at parturition or any other reason that could explain the stillbirth. The numbers of male and female calves were rather equally distributed within the groups. A wide variation in post mortem weights was seen in all groups, although a number of the calves in the group of clinically normal calves with unexplained reason of death were rather small and, compared with e.g. those calves categorised as having died due to a difficult calving, their average birth weight was 6 kg lower (39.9 ± 1.7 kg vs. 45.9 ± 1.5 kg, p ≤ 0.01). It was concluded that the cause of stillbirth with a non-infectious aetiology is likely to be multifactorial and difficult calving may explain only about half of the stillbirths. As much as one third of the calves seemed clinically normal with no obvious reason for death. This is a target group of calves that warrants a more thorough investigation in further studies

    Relating the Cosmological Constant and Supersymmetry Breaking in Warped Compactifications of IIB String Theory

    Get PDF
    It has been suggested that the observed value of the cosmological constant is related to the supersymmetry breaking scale M_{susy} through the formula Lambda \sim M_p^4 (M_{susy}/M_p)^8. We point out that a similar relation naturally arises in the codimension two solutions of warped space-time varying compactifications of string theory in which non-isotropic stringy moduli induce a small but positive cosmological constant.Comment: 7 pages, LaTeX, references added and minor changes made, (v3) map between deSitter and global cosmic brane solutions clarified, supersymmetry breaking discussion improved and references adde

    Phase-Dependent Spontaneous Spin Polarization and Bifurcation Delay in Coupled Two-Component Bose-Einstein Condensates

    Full text link
    The spontaneous spin polarization and bifurcation delay in two-component Bose-Einstein condensates coupled with laser or/and radio-frequency pulses are investigated. We find that the bifurcation and the spontaneous spin polarization are determined by both physical parameters and relative phase between two condensates. Through bifurcations, the system enters into the spontaneous spin polarization regime from the Rabi regime. We also find that bifurcation delay appears when the parameter is swept through a static bifurcation point. This bifurcation delay is responsible for metastability leading to hysteresis.Comment: Improved version for cond-mat/021157

    Patterns of quark mass matrices in a class of Calabi-Yau models

    Full text link
    We study a class of superstring models compactified in the 3-generation Calabi-Yau manifold of Tian and Yau. Our analysis includes the complete E6E_6-singlet sector, which has been recently evaluated using techniques of spectral and exact sequences. We use the discrete symmetries of the models to find flat directions of symmetry breaking that leave unbroken a low energy matter parity and make all leptoquarks heavy while preserving light Higgs fields. Then we classify the patterns of ordinary quark mass matrices and show that (without invoking effects due to nonrenormalizable terms) only one structure can accommodate the observed value of fermion masses and mixing angles, with preference for a heavy {\it top} quark ( mt170m_t\ge 170 GeV for V130.013V_{13}\le 0.013 ). The model, which unifies perturbatively and predicts a realistic structure of quark mass matrices with texture zeroes, is one of the many possible string vacua. However, in contrast with what is often assumed in the search for realistic unified scenarios, it is highly nonminimal near the unification scale and the predicted mass matrices have no simple symmetry properties.Comment: 30 (including Tables and Figures), UG-FT-38/9

    Liquid-jet target for laser-plasma soft x-ray generation

    Get PDF
    We describe a new liquid-target system for low-debris laser-plasma soft x-ray sources. The system is based on a microscopic liquid jet and is experimentally evaluated for 0.7-1 keV proximity lithography and water-window x-ray microscopy applications. Compared to an existing liquid-droplet target, this target system has the same low debris emission, high x-ray photon flux, and narrow spectral bandwidth. The advantages of the liquid-jet target include improved x-ray flux stability, increased range of suitable target liquids, and elimination of the need for temporal synchronization, thereby allowing less complex laser systems to be used. (C) 1996 American Institute of Physics

    Beyond the Fokker-Planck equation: Pathwise control of noisy bistable systems

    Get PDF
    We introduce a new method, allowing to describe slowly time-dependent Langevin equations through the behaviour of individual paths. This approach yields considerably more information than the computation of the probability density. The main idea is to show that for sufficiently small noise intensity and slow time dependence, the vast majority of paths remain in small space-time sets, typically in the neighbourhood of potential wells. The size of these sets often has a power-law dependence on the small parameters, with universal exponents. The overall probability of exceptional paths is exponentially small, with an exponent also showing power-law behaviour. The results cover time spans up to the maximal Kramers time of the system. We apply our method to three phenomena characteristic for bistable systems: stochastic resonance, dynamical hysteresis and bifurcation delay, where it yields precise bounds on transition probabilities, and the distribution of hysteresis areas and first-exit times. We also discuss the effect of coloured noise.Comment: 37 pages, 11 figure

    Sagittal Abdominal Diameter as a Screening Tool in Clinical Research: Cutoffs for Cardiometabolic Risk

    Get PDF
    Background. Waist girth and BMI are commonly used as markers of cardiometabolic risk. Accumulating data however suggest that sagittal abdominal diameter (SAD) or “abdominal height” may be a better marker of intra-abdominal adiposity and cardiometabolic risk. We aimed to identify cutoffs for SAD using a cardiometabolic risk score. Design. A population-based cross-sectional study. Methods. In 4032 subjects (1936 men and 2096 women) at age 60, different anthropometric variables (SAD, BMI, waist girth, and waist-to-hip ratio) were measured and cardiometabolic risk score calculated. ROC curves were used to assess cutoffs. Results. Among men SAD showed the strongest correlations to the majority of the individual risk factors; whereas in women SAD was equal to that of waist girth. In the whole sample, the area under the ROC curve was highest for SAD. The optimal SAD cutoff for an elevated cardiometabolic risk score in men was ∼22 cm (95%CI; 21.6 to 22.8) and in women ∼20 cm (95%CI; 19.4 to 20.8). These cutoffs were similar if the Framingham risk score was used. Conclusions. These cutoffs may be used in research and screening to identify “metabolically obese” men who would benefit from lifestyle and pharmacological interventions. These results need to be verified in younger age groups

    Mixed-mode oscillations and interspike interval statistics in the stochastic FitzHugh-Nagumo model

    Full text link
    We study the stochastic FitzHugh-Nagumo equations, modelling the dynamics of neuronal action potentials, in parameter regimes characterised by mixed-mode oscillations. The interspike time interval is related to the random number of small-amplitude oscillations separating consecutive spikes. We prove that this number has an asymptotically geometric distribution, whose parameter is related to the principal eigenvalue of a substochastic Markov chain. We provide rigorous bounds on this eigenvalue in the small-noise regime, and derive an approximation of its dependence on the system's parameters for a large range of noise intensities. This yields a precise description of the probability distribution of observed mixed-mode patterns and interspike intervals.Comment: 36 page

    A mathematical framework for critical transitions: normal forms, variance and applications

    Full text link
    Critical transitions occur in a wide variety of applications including mathematical biology, climate change, human physiology and economics. Therefore it is highly desirable to find early-warning signs. We show that it is possible to classify critical transitions by using bifurcation theory and normal forms in the singular limit. Based on this elementary classification, we analyze stochastic fluctuations and calculate scaling laws of the variance of stochastic sample paths near critical transitions for fast subsystem bifurcations up to codimension two. The theory is applied to several models: the Stommel-Cessi box model for the thermohaline circulation from geoscience, an epidemic-spreading model on an adaptive network, an activator-inhibitor switch from systems biology, a predator-prey system from ecology and to the Euler buckling problem from classical mechanics. For the Stommel-Cessi model we compare different detrending techniques to calculate early-warning signs. In the epidemics model we show that link densities could be better variables for prediction than population densities. The activator-inhibitor switch demonstrates effects in three time-scale systems and points out that excitable cells and molecular units have information for subthreshold prediction. In the predator-prey model explosive population growth near a codimension two bifurcation is investigated and we show that early-warnings from normal forms can be misleading in this context. In the biomechanical model we demonstrate that early-warning signs for buckling depend crucially on the control strategy near the instability which illustrates the effect of multiplicative noise.Comment: minor corrections to previous versio

    A repulsive trap for two electrons in a magnetic field

    Full text link
    We study numerically and analytically the dynamics of two classical electrons with Coulomb interaction in a two dimensional antidot superlattice potential in the presence of crossed electric and magnetic fields. It is found that near one antidot the electron pair can be trapped for a long time and the escape rate from such a trap is proportional to the square of a weak electric field. This is qualitatively different from the case of noninteracting electrons which are trapped forever by the antidot. For the pair propagation in the antidot superlattice we found a broad parameter regime for which the pair is stable and where two repulsive electrons propagate together on an enormously large distance.Comment: revtex, 5 pages, 6 figure
    corecore