We introduce a new method, allowing to describe slowly time-dependent
Langevin equations through the behaviour of individual paths. This approach
yields considerably more information than the computation of the probability
density. The main idea is to show that for sufficiently small noise intensity
and slow time dependence, the vast majority of paths remain in small space-time
sets, typically in the neighbourhood of potential wells. The size of these sets
often has a power-law dependence on the small parameters, with universal
exponents. The overall probability of exceptional paths is exponentially small,
with an exponent also showing power-law behaviour. The results cover time spans
up to the maximal Kramers time of the system. We apply our method to three
phenomena characteristic for bistable systems: stochastic resonance, dynamical
hysteresis and bifurcation delay, where it yields precise bounds on transition
probabilities, and the distribution of hysteresis areas and first-exit times.
We also discuss the effect of coloured noise.Comment: 37 pages, 11 figure