146 research outputs found

    Modelling anaerobic digestion during temperature and load variations

    Full text link
    Experimental results and simulations based on the Anaerobic Digestion Model No.1 (ADM1) with temperature effects on kinetics were used to evaluate rate limiting steps in sludge bed anaerobic digestion (AD) during load and temperature variations. Simulations were carried out in Aquasim. The model is compared to data from a pilot experiment in a 220 liter AD sludge bed reactor treating diary manure for 16 months of various loads; 0–13 kg COD L−1 d−1 and various temperatures; 25°C, 30°C and 35°C. Methane and CO2 production were monitored on-line while soluble and particulate organic carbon, pH and volatile fatty acids were measured on regularly collected inlet and effluent samples. Simulated overall soluble and particulate organic carbon removal, methane and CO2 production, pH and acetate are close to measured values while propionate is underestimated during some transitions. The fit is mainly sensitive to the composition of the feed in terms of relative amounts of lipids, proteins and carbohydrates especially at simultaneously high load and low temperature. During such conditions, the model predicts accumulation of long chained fatty acids (LCFA), suggesting that the degradation of LCFA is the rate-limiting step at low temperatures. This effect is not explained by reduced LCFA solubility at lower temperature. The model predicts that sludge bed AD efficiency on substrates with little or no LCFA is independent of temperature between 25°C and 35°C while LCFA degradation is favoured by higher temperature.The project was supported by the Norwegian Agricultural Agency, Innovation Norway, The Research Council of Norway, Ministry of Education and Research and Telemark University College

    Associations between health-related quality of life, physical function and fear of falling in older fallers receiving home care

    Get PDF
    Falls and injuries in older adults have significant consequences and costs, both personal and to society. Although having a high incidence of falls, high prevalence of fear of falling and a lower quality of life, older adults receiving home care are underrepresented in research on older fallers. The objective of this study is to determine the associations between health-related quality of life (HRQOL), fear of falling and physical function in older fallers receiving home care

    Acromegaly and gigantism in the medical literature. Case descriptions in the era before and the early years after the initial publication of Pierre Marie (1886)

    Get PDF
    In 1886 Pierre Marie used the term “acromegaly” for the first time and gave a full description of the characteristic clinical picture. However several others had already given clear clinical descriptions before him and sometimes had given the disease other names. After 1886, it gradually became clear that pituitary enlargement (caused by a pituitary adenoma) was the cause and not the consequence of acromegaly, as initially thought. Pituitary adenomas could be found in the great majority of cases. It also became clear that acromegaly and gigantism were the same disease but occurring at different stages of life and not different diseases as initially thought. At the end of the 19th and beginning of the 20th century most information was derived from case descriptions and post-mortem examinations of patients with acromegaly or (famous) patients with gigantism. The stage was set for further research into the pathogenesis, diagnosis and therapy of acromegaly and gigantism

    Characteristics of outdoor falls among older people: A qualitative study

    Get PDF
    Background Falls are a major threat to older people’s health and wellbeing. Approximately half of falls occur in outdoor environments but little is known about the circumstances in which they occur. We conducted a qualitative study to explore older people’s experiences of outdoor falls to develop understanding of how they may be prevented. Methods We conducted nine focus groups across the UK (England, Wales, and Scotland). Our sample was from urban and rural settings and different environmental landscapes. Participants were aged 65+ and had at least one outdoor fall in the past year. We analysed the data using framework and content analyses. Results Forty-four adults aged 65 – 92 took part and reported their experience of 88 outdoor falls. Outdoor falls occurred in a variety of contexts, though reports suggested the following scenarios may have been more frequent: when crossing a road, in a familiar area, when bystanders were around, and with an unreported or unknown attribution. Most frequently, falls resulted in either minor or moderate injury, feeling embarrassed at the time of the fall, and anxiety about falling again. Ten falls resulted in fracture, but no strong pattern emerged in regard to the contexts of these falls. Anxiety about falling again appeared more prevalent among those that fell in urban settings and who made more visits into their neighbourhood in a typical week. Conclusions This exploratory study has highlighted several aspects of the outdoor environment that may represent risk factors for outdoor falls and associated fear of falling. Health professionals are recommended to consider outdoor environments as well as the home setting when working to prevent falls and increase mobility among older people

    Cold adaptation drives population genomic divergence in the ecological specialist, Drosophila montana

    Get PDF
    Funding: UK Natural Environment Research Council (Grant Number(s): NE/L501852/1, NE/P000592/1); Academy of Finland (GrantNumber(s): 267244, 268214, 322980), Ella ja Georg Ehrnroothin Säätiö.Detecting signatures of ecological adaptation in comparative genomics is challenging, but analysing population samples with characterised geographic distributions, such as clinal variation, can help identify genes showing covariation with important ecological variation. Here, we analysed patterns of geographic variation in the cold-adapted species Drosophila montana across phenotypes, genotypes and environmental conditions and tested for signatures of cold adaptation in population genomic divergence. We first derived the climatic variables associated with the geographic distribution of 24 populations across two continents to trace the scale of environmental variation experienced by the species, and measured variation in the cold tolerance of the flies of six populations from different geographic contexts. We then performed pooled whole genome sequencing of these six populations, and used Bayesian methods to identify SNPs where genetic differentiation is associated with both climatic variables and the population phenotypic measurements, while controlling for effects of demography and population structure. The top candidate SNPs were enriched on the X and fourth chromosomes, and they also lay near genes implicated in other studies of cold tolerance and population divergence in this species and its close relatives. We conclude that ecological adaptation has contributed to the divergence of D. montana populations throughout the genome and in particular on the X and fourth chromosomes, which also showed highest interpopulation FST. This study demonstrates that ecological selection can drive genomic divergence at different scales, from candidate genes to chromosome-wide effects.Publisher PDFPeer reviewe
    corecore