80 research outputs found

    Magnetic quantum oscillations in borocarbide superconductors

    No full text
    We report systematic de Haas–van Alphen (dHvA) investigations in the normal and superconducting state of RNi₂B₂C (R = Y and Lu). The observed rich frequency spectrum of the dHvA signals results from a rather complex electronic band structure with different open and closed Fermi-surface sheets. From our data in combination with full-potential local-orbital calculations we are able to extract the angular-resolved mass-enhancement factors, λ, for different bands. We find a strong anisotropy and band dependence of λ, clearly reflecting the multiband character of the superconductivity in RNi₂B₂C. We further were able to resolve dHvA oscillations deep into the superconducting state. The observed additional damping of the dHvA amplitudes is much less than expected from most theories. This hints at a reduced or even zero superconducting gap for the detected Fermi surface

    Damping of dHvA oscillations and vortex-lattice disorder in the peak-effect region of strong type-II superconductors

    Get PDF
    The phenomenon of magnetic quantum oscillations in the superconducting state poses several questions that still defy satisfactory answers. A key controversial issue concerns the additional damping observed in the vortex state. Here, we show results of \mu SR, dHvA, and SQUID magnetization measurements on borocarbide superconductors, indicating that a sharp drop observed in the dHvA amplitude just below H_{c2} is correlated with enhanced disorder of the vortex lattice in the peak-effect region, which significantly enhances quasiparticle scattering by the pair potential.Comment: 4 pages 4 figure

    Large Broadening of the Superconducting Transition by Fluctuations in a 3D Metal at High Magnetic Fields: The MgB2_{2} case

    Full text link
    It is shown that the transition to the low temperature superconducting state in a 3D metal at high magnetic field is smeared dramatically by thermal fluctuation of the superconducting order parameter. The resulting superconducting-to-normal crossover occurs in a vortex liquid state which is extended well below the mean-field Hc2H_{c2}. Application to MgB2_{2} yields good quantitative agreement with recently reported data of dHvA oscillation in the superconducting state

    Superconducting transitions of intrinsic arrays of weakly coupled one-dimensional superconducting chains: the case of the extreme quasi-1D superconductor Tl(2)Mo(6)Se(6)

    No full text
    International audienceTl(2)Mo(6)Se(6) represents a model system for quasi-one-dimensional (quasi-1D) superconductors. We investigate its superconducting transition in detail by means of electrical transport experiments on high-quality single crystalline samples with onset T(c) = 6.8 K. Our measurements indicate a highly complex superconducting transition that occurs in different stages, with a characteristic bump in the resistivity and distinct plateau structures in the supercurrent gap imaged by V-I curves. We interpret these features as fingerprints of the gradual establishment of global phase coherence in an array of weakly coupled parallel 1D superconducting bundles. In this way, we demonstrate that superconducting Tl(2)Mo(6)Se(6) behaves like an intrinsic array of proximity or Josephson junctions, undergoing a complex superconducting phase-ordering transition at 4.5 K that shows many similarities to the Berezinskii-Kosterlitz-Thouless transition

    The Fulde-Ferrell-Larkin-Ovchinnikov State in the Organic Superconductor k-(BEDT-TTF)2Cu(NCS)2 as Observed in Magnetic Torque Experiments

    Full text link
    We present magnetic-torque experiments on the organic superconductor k-(BEDT-TTF)2Cu(NCS)2 for magnetic fields applied parallel to the 2D superconducting layers. The experiments show a crossover from a second-order to a first-order transition when the upper critical field reaches 21 T. Beyond this field, which we interpret as the Pauli limit for superconductivity, the upper critical field line shows a pro-nounced upturn and a phase transition line separates the superconducting state into a low- and a high-field phase. We interpret the data in the framework of a Fulde-Ferrell-Larkin-Ovchinnikov state.Comment: 2 pages, 1 figur

    Point-contact study of the LuNi2B2C borocarbide superconducting film

    Full text link
    We present point-contact (PC) Andreev-reflection measurements of a superconducting epitaxial c-axis oriented nickel borocarbide film LuNi2B2C (Tc=15.9 K). The averaged value of the superconducting gap is found to be 2.6 +/-0.2 meV in the one-gap approach, whereas the two-gap approach results in 2.14+/-0.36 meV and 3.0+/-0.27 meV. The better fit of the Andreev-reflection spectra for the LuNi2B2C - Cu PC obtained by the two-gap approach provides evidence for multiband superconductivity in LuNi2B2C. For the first time, PC electron-phonon interaction (EPI) spectra have been measured for this compound. They demonstrate pronounced phonon maximum at 8.5+/-0.4meV and a second shallow one at 15.8+/-0.6 meV. The electron-phonon coupling constant estimated from the PC EPI spectra turned out to be small (~ 0.1), like in other superconducting rare-earth nickel borocarbides. Possible reasons for this are discussed.Comment: 5 pages, 5 figures, V2: figs. 2 & 5 captions are corrected, and new Refs. 4, 6, 12, 13, 14 are adde

    Spin-zero anomaly in the magnetic quantum oscillations of a two-dimensional metal

    Full text link
    We report on an anomalous behavior of the spin-splitting zeros in the de Haas-van Alphen (dHvA) signal of a quasi-two-dimensional organic superconductor. The zeros as well as the angular dependence of the amplitude of the second harmonic deviate remarkably from the standard Lifshitz-Kosevich (LK) prediction. In contrast, the angular dependence of the fundamental dHvA amplitude as well as the spin-splitting zeros of the Shubnikov-de Haas signal follow the LK theory. We can explain this behavior by small chemical-potential oscillations and find a very good agreement between theory and experiment. A detailed wave-shape analysis of the dHvA signal corroborates the existence of an oscillating chemical potential

    Upper critical field and de Haas-van Alphen oscillations in KOs2_2O6_6 measured in a hybrid magnet

    Full text link
    Magnetic torque measurements have been performed on a KOs2_2O6_6 single crystal in magnetic fields up to 35.3 T and at temperatures down to 0.6 K. The upper critical field is determined to be \sim30 T. De Haas-van Alphen oscillations are observed. A large mass enhancement of (1+λ\lambda) = m/mbandm^* / m_{band} = 7.6 is found. It is suggested that, for the large upper critical field to be reconciled with Pauli paramagnetic limiting, the observed mass enhancement must be of electron-phonon origin for the most part.Comment: 4 pages, 4 figures, published versio
    corecore