7,966 research outputs found

    PBW-deformations of N-Koszul algebras

    Get PDF
    For a quotient algebra UU of the tensor algebra we give explicit conditions on its relations for UU being a PBW-deformation of an NN-Koszul algebra AA. We show there is a one-one correspondence between such deformations and a class of A∞A_\infty-structures on the Yoneda algebra ExtA∗(k,k)Ext_A^*(k,k) of AA. We compute the PBW-deformations of the algebra whose relations are the anti-symmetrizers of degree NN and also of cubic Artin-Schelter algebras.Comment: 35 pages. Some minor correction

    Cenozoic paleoceanography 1986: An introduction

    Get PDF
    New developments in Cenozoic paleoceanography include the application of climate models and atmospheric general circulation models to questions of climate reconstruction, the refinement of conceptual models for interpretation of the carbon isotope record in terms of carbon mass balance, paleocirculation, paleoproductivity, and the regional mapping of paleoceanographic events by acoustic stratigraphy. Sea level change emerges as a master variable to which changes in the ocean environment must be traced in many cases, and tests of the onlap-offlap paradigm therefore are of crucial importance

    Solar Flare Track Exposure Ages in Regolith Particles: A Calibration for Transmission Electron Microscope Measurements

    Get PDF
    Mineral grains in lunar and asteroidal regolith samples provide a unique record of their interaction with the space environment. Space weathering effects result from multiple processes including: exposure to the solar wind, which results in ion damage and implantation effects that are preserved in the rims of grains (typically the outermost 100 nm); cosmic ray and solar flare activity, which result in track formation; and impact processes that result in the accumulation of vapor-deposited elements, impact melts and adhering grains on particle surfaces. Determining the rate at which these effects accumulate in the grains during their space exposure is critical to studies of the surface evolution of airless bodies. Solar flare energetic particles (mainly Fe-group nuclei) have a penetration depth of a few millimeters and leave a trail of ionization damage in insulating materials that is readily observable by transmission electron microscope (TEM) imaging. The density of solar flare particle tracks is used to infer the length of time an object was at or near the regolith surface (i.e., its exposure age). Track measurements by TEM methods are routine, yet track production rate calibrations have only been determined using chemical etching techniques [e.g., 1, and references therein]. We used focused ion beam-scanning electron microscope (FIB-SEM) sample preparation techniques combined with TEM imaging to determine the track density/exposure age relations for lunar rock 64455. The 64455 sample was used earlier by [2] to determine a track production rate by chemical etching of tracks in anorthite. Here, we show that combined FIB/TEM techniques provide a more accurate determination of a track production rate and also allow us to extend the calibration to solar flare tracks in olivine

    Relationships between magnetic foot points and G-band bright structures

    Full text link
    Magnetic elements are thought to be described by flux tube models, and are well reproduced by MHD simulations. However, these simulations are only partially constrained by observations. We observationally investigate the relationship between G-band bright points and magnetic structures to clarify conditions, which make magnetic structures bright in G-band. The G-band filtergrams together with magnetograms and dopplergrams were taken for a plage region covered by abnormal granules as well as ubiquitous G-band bright points, using the Swedish 1-m Solar Telescope (SST) under very good seeing conditions. High magnetic flux density regions are not necessarily associated with G-band bright points. We refer to the observed extended areas with high magnetic flux density as magnetic islands to separate them from magnetic elements. We discover that G-band bright points tend to be located near the boundary of such magnetic islands. The concentration of G-band bright points decreases with inward distance from the boundary of the magnetic islands. Moreover, G-band bright points are preferentially located where magnetic flux density is higher, given the same distance from the boundary. There are some bright points located far inside the magnetic islands. Such bright points have higher minimum magnetic flux density at the larger inward distance from the boundary. Convective velocity is apparently reduced for such high magnetic flux density regions regardless of whether they are populated by G-band bright points or not. The magnetic islands are surrounded by downflows.These results suggest that high magnetic flux density, as well as efficient heat transport from the sides or beneath, are required to make magnetic elements bright in G-band.Comment: 9 pages, 14 figures, accepted for publication in A&

    Constraints on Exposure Ages of Lunar and Asteroidal Regolith Particles

    Get PDF
    Mineral grains in lunar and asteroidal regolith samples provide a unique record of their interaction with the space environment. Exposure to the solar wind results in implantation effects that are preserved in the rims of grains (typically the outermost 100 nm), while impact processes result in the accumulation of vapor-deposited elements, impact melts and adhering grains on particle surfaces. These processes are collectively referred to as space weathering. A critical element in the study of these processes is to determine the rate at which these effects accumulate in the grains during their space exposure. For small particulate samples, one can use the density of solar flare particle tracks to infer the length of time the particle was at the regolith surface (i.e., its exposure age). We have developed a new technique that enables more accurate determination of solar flare particle track densities in mineral grains <50 micron in size that utilizes focused ion beam (FIB) sample preparation combined with transmission electron microscopy (TEM) imaging. We have applied this technique to lunar soil grains from the Apollo 16 site (soil 64501) and most recently to samples from asteroid 25143 Itokawa returned by the Hayabusa mission. Our preliminary results show that the Hayabusa grains have shorter exposure ages compared to typical lunar soil grains. We will use these techniques to re-examine the track density-exposure age calibration from lunar samples reported by Blanford et al. (1975)

    Transmission Electron Microscopy of Plagioclase-Rich Itokawa Grains: Space Weathering Effects and Solar Flare Track Exposure Ages

    Get PDF
    Limited samples are available for the study of space weathering effects on airless bodies. The grains returned by the Hayabusa mission to asteroid 25143 Itokawa provide the only samples currently available to study space weathering of ordinary chondrite regolith. We have previously studied olivine-rich Itokawa grains and documented their surface alteration and exposure ages based on the observed density of solar flare particle tracks. Here we focus on the rarer Itokawa plagioclase grains, in order to allow comparisons between Itokawa and lunar soil plagioclase grains for which an extensive data set exists

    Insights into Regolith Evolution from TEM Studies of Space Weathering of Itokawa Particles

    Get PDF
    Exposure to solar wind irradiation and micrometeorite impacts alter the properties of regolith materials exposed on airless bodies. However, estimates of space weathering rates for asteroid regoliths span many orders of magnitude. Timescales for space weathering processes on airless bodies can be anchored by analyzing surface samples returned by JAXA's Hayabusa mission to asteroid 25143 Itokawa. Constraints on timescales of solar flare particle track accumulation and formation of solar wind produced ion-damaged rims yield information on regolith dynamics

    Insights into Regolith Dynamics from the Irradiation Record Preserved in Hayabusa Samples

    Get PDF
    The rates of space weathering processes are poorly constrained for asteroid surfaces, with recent estimates ranging over 5 orders of magnitude. The return of the first surface samples from a space-weathered asteroid by the Hayabusa mission and their laboratory analysis provides "ground truth" to anchor the timescales for space weathering. We determine the rates of space weathering on Itokawa by measuring solar flare track densities and the widths of solar wind damaged rims on grains. These measurements are made possible through novel focused ion beam (FIB) sample preparation methods

    Space Weathering of Olivine in Lunar Soils: A Comparison to Itokawa Regolith Samples

    Get PDF
    Regolith particles from airless bodies preserve a record of the space weathering processes that occurred during their surface exposure history. These processes have major implications for interpreting remote-sensing data from airless bodies. Solar wind irradiation effects occur in the rims of exposed grains, and impact processes result in the accumulation of vapordeposited elements and other surface-adhering materials. The grains returned from the surface of Itokawa by the Hayabusa mission allow the space weathering "style" of a chondritic, asteroidal "soil" to be compared to the lunar case. Here, we present new studies of space-weathered olivine grains from lunar soils, and compare these results to olivine grains from Itokawa. Samples and Methods: We analyzed microtome thin sections of olivine grains from the 20-45 micron fractions of three lunar soils: 71061, 71501 and 10084 (immature, submature and mature, respectively). Imaging and analytical data were obtained using a JEOL 2500SE 200kV field-emission scanning-transmission electron microscope equipped with a thin-window energy-dispersive x-ray spectrometer. Similar analyses were obtained from three Hayabusa olivine grains. Results and Discussion: We observed lunar grains showing a range of solar flare track densities (from <10(exp 9) to approx.10(exp 12)/sq cm). The lunar olivines all show disordered, highly strained, nanocrystalline rims up to 150-nm thick. The disordered rim thickness is positively correlated with solar flare track density. All of the disordered rims are overlain by a Si-rich amorphous layer, ranging up to 50-nm thick, enriched in elements that are not derived from the host olivine (e.g., Ca, Al, and Ti). The outmost layer represents impact-generated vapor deposits typically observed on other lunar soil grains. The Hayabusa olivine grains show track densities <10(exp 10)/sq cm and display disordered rims 50- to 100-nm thick. The track densities are intermediate to those observed in olivines in immature and submature lunar soils and indicate surface exposures of approx. 10(exp 5) years. The outermost few nanometers of the disordered rims on Hayabusa olivines are more Si-rich and Mg- and Fe-depleted relative to the cores of the grains and likely represent a minor accumulation of impact-generated vapors or sputter deposits. Nanophase Fe metal particles are less abundant in the Hayabusa rims compared to the rims on lunar grains. Conclusions: The Hayabusa and lunar olivine grain rims have widths and microstructures consistent with formation from atomic displacement damage from solar wind ions. The space weathering features in the Hayabusa grains are similar to those observed in olivines from immature to submature lunar soils. A major difference, however, is that the Hayabusa grains appear to lack the hypervelocity impact products (melt spherules, thick vapor deposits, and abundant nanophase Fe metal particles) that are common in lunar soil grains with a similar exposure history

    A Transmission Electron Microscope Investigation of Space Weathering Effects in Hayabusa Samples

    Get PDF
    The Hayabusa mission to asteroid 25143 Itokawa successfully returned the first direct samples of the regolith from the surface of an asteroid. The Hayabusa samples thus present a special opportunity to directly investigate the evolution of asteroidal surfaces, from the development of the regolith to the study of the more complex effects of space weathering. Here we describe the mineralogy, microstructure and composition of three Hayabusa mission particles using transmission electron microscope (TEM) technique
    • …
    corecore